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Abstract. Sleep stage scoring based on electroencephalogram (EEG)
signals is a repetitive task required for basic and clinical sleep stud-
ies. Sleep stages are defined on 30 seconds EEG-epochs from brainwave
patterns present in specific frequency bands. Time-frequency representa-
tions such as spectrograms can be used as input for deep learning meth-
ods. In this paper we compare different spectrograms, encoding multiple
EEG channels, as input for a deep network devoted to the recognition
of image’s visual patterns. We further investigate how contextual input
enhance the classification by using EEG-epoch sequences of increasing
lengths. We also propose a common evaluation framework to allow a fair
comparison between state-of-art methods. Evaluations performed on a
standard dataset using this unified protocol show that our method out-
performs four state-of-art methods.

Keywords: Sleep scoring - time-frequency representation - computer
vision - EEG - signal processing.

1 Introduction

Sleep is an important physiological process which can be monitored through
polysomnography (PSG). A PSG involves multiple signals, such as electro-ence-
phalogram (EEG), electro-oculogram (EOG) or electro-myogram (EMG). The
American Academy of Sleep Medicine (AASM) edited guidelines [3] to classify
sleep into different stages based on a 30 second time-frame called an epoch
(EEG-epoch). The actual AASM standard identifies 5 stages : wakefulness (W),
rapid eye movement (REM) and Non-REM sleep (N1, N2, N3). Sleep studies
often need to score each EEG-epoch, which is a tedious task for a human expert.
Therefore, sleep scoring could benefit from automation, especially in the case
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Table 1. Frequency bands for brain activity
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of whole night recordings. Frontal EEG are often artefacted by ocular move-
ments similar to the EOG signal. Moreover, the placement of multiple sensors
for multi-modal analysis complicates the acquisition stage while the contribution
of multimodality to the stage analysis is not clearly established.

Therefore, we want to investigate if we can simplify the acquisition by only
using multiple EEG channels. The AASM groups different frequencies into fre-
quency bands as detailed in Table 1. Each band corresponds to specific graphic
elements in EEG signal used to analyze the brain activity and for sleep scoring.
Representation of EEG signals as time-frequency images, or spectrograms, can
show the variations in brain activity during sleep depth [12]. One important
advantage of such representations is that it enables the use of deep networks
devoted to pattern recognition and classification problems on images. Such net-
works have been subject to intensive investigations for more than 10 years.

2 State of the art

Sleep scoring methods can be analyzed through their input modalities, the com-
puted features on each EEG-epoch, the way they take into account contextual
information, or the type of method used in order to obtain the final classification.

Many authors use EEG, EOG and EMG as multimodal inputs for their net-
works [9, 10,4, 7,6, 18], resulting in a scoring aligned with the AASM standard. A
classical heuristic [16,5, 19, 20] consists in substracting the EOG signal to EEG
acquisitions. The resulting signal provides interesting classification results but
lacks interpretability for experts.

The number of EEG channels varies according to the methods and the
datasets on which they are applied. For example, Qu et al. [13] only use one
EEG signal while Jia et al. [7] use up to 20 EEG signals. Using more electrodes
increases the number of input signals and should improve the scoring. However,
increasing the number of electrodes increases the complexity of acquisition and
analysis. In addition, electrodes become closer together on the skull as the num-
ber of electrodes increases, which enhances interference between signals from
nearby electrodes. The optimal number of electrodes is still an open question.

The benefits of spectral analysis is recognized by sleep researchers as early
as the 1980s [15]. However, spectral estimation based on Fourier transform as-
sumes the signal is infinite, periodic and stationary. Therefore, used on EEG
signals, which are finite, aperiodic and non-stationary, the spectrogram can be
artefacted. Multitaper convolutions, or Tapers, have been proven to reduce this
bias [12]. Tapers-based spectrograms have been used by Vilamala et al. [21] in
conjunction with the VGG-16 convolutional neural network (CNN), on a 5 EEG-
epoch sequence on a single EEG signal. VGG-16 takes (3,224,224) RGB images
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as input. Vilamala et al. transform the spectrogram with a colormap; then use
a VGG-16 pretrained on the ImageNet dataset, but with parameters in the fully
connected layers randomized, and all weights unfreezed in their best performing
experiments.

Manual sleep scoring often involves some form of contextual input. Many
studies test the impact of using a temporal sequence of EEG-epochs as input
of their network, instead of a single EEG epoch [10,16,5,11]. The length of
sequence differs greatly for one author to another. For example, Dong et al. [5]
tried sequences from 1 to 6 EEG-epochs and found their best results between
2 and 4 EEG-epochs, while Phan et al. [10] found that sequences greater than
10 EEG-epochs had minimal impact on classification. Therefore, networks can
often be divided into two sections: one that extracts features within each EEG-
epoch (intra-epoch), and another that compares the features from neighboring
EEG-epochs to get a better classification (inter-epoch).

The intra-epoch features can be handcrafted. For example, Dong et al. [5]
and Sun et al. [18] extract handcrafted features from the power spectral density
(PSD). Features can also be learned using CNNs [5,9,13,16, 18] or recurrent
neural networks (RNNs) [10].

Inter-epoch networks are mainly based on RNN structures, mostly Long-
Short-Term-Memory (LSTM) layers, both bi-directional [16,18,19] and not [5,
20]. Phan et al. [10] also used RNNs, with bi-directional Gated Recurrent Units
(GRU) at both the intra-epoch and inter-epoch levels. Contextual information
within the inter-epoch section may also be analysed using non-recurrent net-
works. For example, Qu et al. [13] used a Transformer-like attention network to
extract inter-epoch features, Jia et al.[7] combines a temporal convolution with
an attention mechanism and Dong et al. [5] only used a softmax layer.

3 Method

3.1 Dataset preprocessing

Our network takes spectrograms extracted from C EEG signals, spatially diverse,
allowing us to include rich spatial information. We used two time-frequency
representations of our signals: FFT and Tapers. We computed spectrograms
using the Fast Fourier Transform (FFT) and the parameters provided by Phan
et al. [10]: a 2-second Hamming window with 50% overlap. This gives us an image
where 1 pixel encodes 0.5 Hz. Unlike Vilamala et al. [21], we cut the frequency
axis at 45 Hz included, as higher frequencies do not carry relevant brainwave
information. We then convert the amplitude spectrum to a logarithmic scale as
done by Vilamala et al. After computing the spectrograms, we divided them into
30 seconds EEG-epochs. With C' the number of EEG channels used as input,
the resulting image for 1 EEG-epoch is a (C,30,90) tensor. For each EEG-epoch,
we also computed the C' x C electrodes covariance matrices, as a way to convey
spatial co-variation information, with F' being the number of covariance matrices.
These matrices have been computed on the native EEG-epoch signal, and on a
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EEG Spectrograms
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Fig. 1. The preprocessing and classification pipeline. The EEG signals are transformed
into C spectrograms and F' covariance matrices. Contextual information is added (here,
T=T7 and vertical lines have been added for visualization only). Spectrograms and
covariance matrices are concatenated into a (C + F,224,244) tensor, used as input for
a finetuned VGG-16 network.

filtered version for each frequency band described in Table 1, resulting in F'=T7.
With C'=8, these F' (8,8) matrices have been reshaped through repetition of rows
and concatenated into a (F,30,90) tensor, then concatenated as supplementary
channels to the (C,30,90) spectrograms. The resulting (C' 4+ F,30,90) tensor is
then zero-padded to fit inside a (C' + F,224,224) shape, which is our adapted
VGG-16 input layer, as shown in Figure 1.

To get the same spectrogram frequency sampling when computing the FFT
and multitapers spectrograms, we used the heuristic described in Prerau et al.
[12] where the number of tapers L is L = |2W | — 1, with W being the half-time
bandwith product and |z] the floor function. To get comparable spectra between
FFT and Tapers, we used L=3.

3.2 Contextual Information

In order to investigate the impact of contextual information for scoring, we used
different EEG sequence lengths as input for the VGG input space, with T" being
the length of the sequence. Following the AASM guidelines, information above
3 to 5 EEG-epochs should not be relevant for scoring. Therefore, we tested
T=1,3,5,7 EEG-epochs fitted inside the (C + F',224,224) input tensor. In these
samples, the EEG-epoch to classify has been centered in the input tensor, and we
added past EEG-epochs on the left of the central epoch and future EEG-epochs
on the right. We added future EEG-epochs as human experts also use them for
manual scoring, especially during state transitions.

3.3 Finetuning a deep network to multi-electrode data

Manual sleep scoring is a visual process, therefore we use computer vision tech-
niques to extract information from EEG signals. Extensive research has been
done in the field of visual pattern recognition, therefore we chose a classification
network that is efficient in that regard. We used a VGG-16 CNN [17] with batch
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normalization layers. This network can be used for transfer learning, as it has
been trained on ImageNet [14] natural images.

After loading the pretrained weights, we replaced the first layer by a C' + F-
channel deep convolutional layer to match the number of EEG channels and
covariance matrices, and replaced the final dense layer to fit our 5-class clas-
sification problem. As VGG has been pretrained on color images, we need to
finetune the first and last layer before training the whole network. We initially
froze the weights of the network except the first and last layers, for 10 epochs,
then unfroze the whole VGG for the rest of the training. We used checkpoints
after each training epoch and early stopping to save the best network based on
validation MF1 score.

4 Experiments

4.1 Dataset used

This study is focused on healthy subjects described by multiple EEG signals. We
therefore use the Montreal Archive of Sleep Studies (MASS) dataset [8] which
fits these criteria while remaining easily accessible.

The MASS dataset is divided in 5 studies (SS1 to SS5). The only study which
involves healthy subjects, scored on 30-second epochs is the SS3 subset. This
subset gathers one whole-night recording of 62 subjects using 20 EEG channels,
which allows comparison between different brain region signals. On each EEG
channel, a 60 Hz notch filter has been applied, as well as a low and high-pass filter
with a cutoff frequency of 0.30 Hz and 100 Hz respectively. The different sleep
stages are not equally distributed during the night. Consequently, this dataset is
imbalanced, with around 50.2% of epochs being in the N2 sleep stage, as shown
in Table 2. To correct the class imbalance, we repeat samples during training
so that each class has the same number of samples. For validation and testing,
we used unbalanced data as these subsets are supposed to represent real case
studies, meaning unbalanced classes.

As stated in section 3.1, we have elected to study 8 EEG signals in particular,
recorded from a variety of locations on the skull: F3, F4, C3, C4, T3, T4, O1 and
02. We will refer to each electrode couple by their location (F for {F3;F4}). Un-
less stated otherwise in section 4.5 of the ablation study, each result is presented
with C'=8 electrodes (FCTO).

Table 2. Class imbalance on the MASS SS3 dataset

Awake| REM | N1 N2 N3 || Total
Number of EEG-epochs| 6.442 |10.581 |4.839|29.802 | 7.653 |/59.317
Percentage 10.86%17.84%| 8.16 |50.24%|12.90%|| 100%
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4.2 Folds and metrics

We divided the SS3 dataset using the 31 folds proposed by Seo et al. [16], and
available on their Github repository. Each fold has 50 training subjects, 10 valida-
tion subjects and 2 test subjects. Since there are 62 subjects, the set of test folds
covers the whole datatest set without overlap. We used a Tree-structured Parzen
Estimator (TPE) approach [2] as implemented in Optuna [1] to determine the
best hyperparameters for the first fold. Namely, the learning rate, momentum,
weight decay and learning rate decay. Due to time constraints, we applied the
TPE only on the first fold, and used the resulting fine-tuned set of hyperparame-
ters for training and validation on the 31 folds. The resulting model for each fold
is then evaluated on the test set of the fold, leading to one value of each metric
per fold. We monitored the main metrics used in the literature : macro-averaged
F1 (MF1), macro-averaged accuracy (MaccroAccuracy) and Cohen’s kappa. The
MASS dataset has a strong class imbalance, therefore overall accuracy and F1
score become biased metrics. Consequently, MF1 and Macro-accuracy are more
indicative of relative per-class accuracy. In our results, we present the mean and
standard deviation of each metric based on the 31 fold-based predictions.

4.3 Time-frequency representations

We first test the impact of the spectral representation by testing FFT against
Tapers. We insure that both representations have the same spectral resolution
by using L = 3 as number of Tapers, which gives a frequency resolution of 0.5Hz,
identical to a 2-second window FF'T. The comparison of FFT and Tapers scoring
is provided in Table 3. Tapers gets better results on all three statistics while the
gap between both representations remains within the standard deviation. We
therefore use Tapers spectrograms in the following tests.

Table 3. Performances reached for FFT and Tapers

MF1 MacroAccuracy Kappa
FFT | 77.79 4+ 3.80 | 80.68 &+ 3.84 | 0.759 &£ 0.051
Tapers|78.53 + 3.77| 81.06 + 3.39 |0.766 £+ 0.057

4.4 Increasing context information

Using Tapers as time-frequency representation, we tested the effect of contex-
tual inputs by gradually increasing the length of the sequence T'. Results are
shown in Table 4. We observe an improvement of all the metrics and a decreas-
ing standard deviation as the length of the EEG sequences grows. Reaching
better performances from 1 to 3 EEG-epochs underlines the importance of con-
textual information, which is congruent with the AASM standard. Our best
performances is reached for 7 epochs, which does not align with Dong et al. [5],
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as their best results were reached between 2 and 4 EEG-epochs. These results
suggest that even longer sequences can enhance classification. Especially, reduc-
ing the standard deviation seems to be relevant when using the fold provided by
Seo et al. [16]. Consequently, we used T=7 for the remaining tests.

Table 4. Results from 1 to 7 EEG epochs in the VGG space

T EEG epochs MF1 MacroAccuracy Kappa
78.53 + 3.77 | 81.06 £ 3.39 | 0.766 £ 0.057
80.00 £ 3.65 | 81.83 + 3.70 | 0.782 4 0.052
80.02 + 3.80 | 81.89 £ 3.40 |0.7869 £ 0.049

81.79 + 2.95| 82.96 + 2.88 |0.809 + 0.038

~| oY w|

4.5 Removing spatial information

We want to study the effect of reducing the number of EEG channels. We
tested 5 decreasing sets of electrodes, from only left electrodes {F3,C3,T3,01}
(FCTO. left) or right {F4,C4,T4,02} (FCTO_right), then tested on FCO_right,
FO_right and F_right to see the influence of the number of electrodes. Compar-
ing (FCTOleft and FCTO_right), we observe a slight decrease in performance
compared to the full FCTO set, while still giving good performances. The right
side performs better, so we successively removed the T, C and O electrodes.
We observe a rise of the standard deviation, but also good performances for
the FCO_right subset. This aligns with the AASM standard, which recommends
using at least FCO from one side for human expert scoring. These results also
suggest that the temporal (T) electrode does not seem relevant for this task, as
removing it seems to give slightly better results.

4.6 Comparison with State-of-the-Art Methods

In order to compare our results to the state of the art, we ran 3 recent methods [7,
16,19]. Jia et al. [7] is a method which gives good results on MASS, Supratak
et al. [19] is often cited as the state-of-art baseline, and Seo et al. [16] uses the
folds we based our method on. All methods used the MASS dataset and have

Table 5. Reducing the number of electrodes

Electrodes MF1 MaccroAccuracy Kappa
FCTO_left | 79.82 & 3.81 81.38 £ 3.58 0.788 £ 0.046
FCTO_right| 80.71 4+ 3.01 | 82.07 + 3.25 | 0.798 4+ 0.039
FCO_right [81.49 + 3.21| 83.11 + 3.37 |0.802 + 0.043
FO_right | 80.60 4+ 3.44 82.67 £+ 3.58 0.790 £ 0.049
F_right 78.77 +3.62 | 81.01 £3.19 | 0.776 + 0.049
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their code publicly available on Github. To get a fair comparison, we ran their
code using the same folds and metrics that we used, as presented in section 4.2.

All three studies originally used 31 folds on MASS, but both Supratak et
al. [19] and Jia et al. [7] have a different fold composition than Seo et al. [16].
Their fold involves 60 subjects per fold as a training set, and the remaining 2
as a validation set. To the best of our knowledge, their published results have
been obtained on their validation set only. This is not best practice but can be
understood, as neither their code nor their papers show signs of hyperparame-
ter optimization. In order to allow a robust comparison between methods, we
retrained Supratak et al. and Jia et al. on Seo et al.’s folds.

All three studies computed their metrics by concatenating the predictions of
each fold into a single array of predictions, and comparing those predictions with
a similarly obtained array of targets. This way, they compute their metrics on
all EEG-epochs of all 62 subjects without omission or repetition. However, this
technique is debatable, as it groups together results obtained from 31 different
networks (one per fold) without taking into account that different folds have
different number of EEG-epochs during prediction. Therefore, computing their
metrics on a concatenated prediction array creates an implicit weighting relative
to each fold’s prediction set size. Moreover, they used overall accuracy instead of
Maccro-Accuracy, and none of them give the standard deviation. Consequently,
we computed the Macro-Accuracy, MF1 and Kappa score for each fold, then
computed the averaged and standard deviation.

These differences may explain the discrepancy between the results published
and the results we obtained by running their code using our folds and methodol-
ogy, as seen in Table 6. We also tested Vilamala et al. [21] on the MASS dataset,
as they are also using Tapers and transfer-learning on VGG-16. While training
Vilamala’s method, we froze the convolution layers beforehand as it gave this
method better results.

With this shared protocol, our method outperforms all four methods, as
shown in Table 6.

5 Discussion
Our results suggest that automatic sleep scoring could benefit from using mul-

titapers spectrograms as time-frequency representation. Using a high number of
epochs as contextual input gave higher results, and seems to reduce the standard

Table 6. Comparison with SOA methods

Methods MF1 MaccroAccuracy Kappa
Seo [16] 77.36 £ 4.76 | 77.17 £ 4.08 | 0.774 = 0.052
Supratak [19]| 79.67 + 4.49 79.99 + 4.26 0.792 £ 0.047
Jia [7] 76.03 & 4.01 | 76.35 £ 4.53 | 0.751 + 0.056
Vilamala [21]| 72.87 £ 5.72 73.24 £ 5.78 0.666 £+ 0.072
Our method [81.79 £ 2.95| 82.96 + 2.88 [0.809 £ 0.038
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deviation. Our results are congruent with the fact that some state transitions
can be influenced by the previous epochs in the AASM standard, and unlike
Dong et al. [5], we still got improvement with a sequence length greater than 6
EEG-epochs. We showed in Table 5 than halving the number of electrode could
maintain strong classification results, thus questioning on the redundancy be-
tween left and right side. However, left-side EEGs are often artefacted by the
cardiac activity, which may explain why we reach slightly better performances
when using only right-side electrodes compared to left-side electrodes. Using
multiple EEG, we got better results than Supratak et al. [19] which used one
mixed signal resulting from the difference between one EOG and one EEG chan-
nel, and better result than Jia et al.[7] which use EEG, EOG and EMG. This
underline that EEG alone can give robust results for classification, thus leading
to simpler acquisition protocols.

6 Conclusion

In this paper we compared two types of time-frequency spectrograms for sleep
scoring. Using a fine-tuned deep visual network, we outperforms state-of-the-
art results. We did an ablation study to determine the number of contextual
EEG-epochs needed, and study how the number of electrodes could impact clas-
sification results. Our results seems relevant with the AASM standard and EEG
expertise regarding the number of EEG-epochs and when comparing left and
right side for electrodes. Our results suggest that acquisition protocol could be
reduced to a lesser number of modalities and sparser electrodes. Finally, we pro-
pose a common methodology for training and method comparison, using the
same folds as Seo et al. [16], which allows hyperparameter research.
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