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Abstract

Large vision-language models like CLIP offer strong zero-shot capabilities but are
computationally demanding. Knowledge distillation is crucial for creating efficient stu-
dent models; however, effectively transferring the teacher’s nuanced understanding of
within-modality relationships, especially among negative examples, remains challeng-
ing. We introduce a novel distillation method focused on capturing the teacher’s intra-
modal relational knowledge. Our approach employs Kullback-Leibler divergence to
measure the disagreement between student and teacher pairwise similarity distributions
within each modality. This disagreement score then dynamically weights the distilla-
tion loss, compelling the student to prioritize learning from samples exhibiting the most
significant relational discrepancies. This strategy encourages closer alignment of the
student’s internal representation space with the teacher’s. Experiments demonstrate our
method produces performant and efficient student models by effectively transferring this
vital relational information. The source code will be made publicly available.

1 Introduction

Vision-Language Models (VLMs) like CLIP [21] have revolutionized visual representation
learning, demonstrating remarkable zero-shot capabilities across diverse tasks such as classi-
fication [7, 18, 23], object detection [1, 29], and visual question answering [3, 4]. By learning
from vast quantities of web-sourced image-text pairs [13], these models align visual and tex-
tual modalities in a shared embedding space, reducing reliance on costly manual annotations
[5, 27]. However, the impressive performance of VLMs often comes at a significant com-
putational cost due to their large scale and reliance on massive datasets [21], limiting their
accessibility and practical deployment, particularly in resource-constrained settings.

Knowledge Distillation (KD) [11] has emerged as a promising technique to mitigate
these challenges. By transferring knowledge from a large, pre-trained teacher model (e.g.,
CLIP) to a smaller, more efficient student model, KD enables the creation of lightweight yet
powerful models [28, 33, 34]. Existing KD methods for VLMs have explored various strate-
gies, including feature mimicking [34], cross-modal affinity alignment [33], and distilling
contrastive objectives [20].
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Despite these advances, a critical aspect often underexplored is the comprehensive trans-
fer of the teacher’s nuanced understanding of within-modality relationships. Powerful VLMs
like CLIP not only align images and text but also develop a sophisticated internal represen-
tation of semantic similarities and dissimilarities among samples within the same modality
(e.g., image-to-image or text-to-text). This relational knowledge, particularly concerning the
subtle distinctions between negative examples or among related positive examples, is en-
coded in the teacher’s internal similarity structures but is not fully captured by distillation
methods focusing primarily on cross-modal alignment or direct feature matching.

This paper introduces a novel knowledge distillation method designed to specifically
address this gap by transferring the teacher’s rich within-modality relational knowledge.
Our approach leverages the Kullback-Leibler (KL) divergence to quantify the discrepancy
between the student’s and teacher’s pairwise similarity distributions within each modality
(image-to-image and text-to-text) for samples within a batch. This discrepancy measure
then dynamically weights the distillation loss, compelling the student to prioritize learning
from samples where its understanding of these internal relationships significantly deviates
from the teacher’s. By focusing on these challenging relational structures, especially among
negative examples, our method encourages the student to develop a more teacher-aligned
and well-structured embedding space.

Our contributions are: (1) A novel knowledge distillation strategy that emphasizes the
transfer of the teacher’s within-modality relational knowledge by matching pairwise simi-
larity distributions. (2) A dynamic weighting mechanism for the distillation loss, guided
by the KL divergence between student and teacher intra-modal similarity distributions, to
focus learning on challenging relational patterns. (3) The empirical validation demonstrat-
ing that our method trains performant and efficient student models that learn a richer, more
teacher-aligned representation.

2 Related Work

2.1 Vision-Language Models

The landscape of visual understanding has been profoundly reshaped by Vision-Language
Models (VLMs) [39]. Seminal works like CLIP [21] and ALIGN [13] established the effi-
cacy of contrastive pre-training on web-scale image-text data, enabling powerful zero-shot
generalization by aligning visual and textual representations in a common embedding space.
Subsequent research has explored diverse VLM architectures and training paradigms. For
instance, Florence [37] and FLAVA [26] aimed to build more comprehensive foundational
models. Others, like DeCLIP [14], investigated data-efficient contrastive learning, while
UniCL [35] proposed unifying contrastive learning across image, text, and label spaces.
Techniques such as LiT [38] focused on efficient transfer learning strategies for large pre-
trained VLMs. While these models exhibit remarkable capabilities, their sheer scale and
computational demands [21] necessitate methods for creating more efficient variants, promi-
nently including knowledge distillation [8, 11].

2.2 Knowledge Distillation for VLLMs

Knowledge Distillation (KD), first introduced by Hinton et al. [11], aims to transfer the
"dark knowledge" from a large teacher model to a smaller student model. This is typically
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achieved by training the student to mimic the teacher’s softened softmax outputs (logits) or
intermediate feature representations [H]. Adapting KD to the multimodal and complex nature
of VLMs like CLIP [[] presents unique challenges and has spurred specialized techniques.

Existing VLM distillation approaches can be broadly categorized by the type of knowl-
edge they aim to transfer: Cross-Modal Alignment Distillation: Many methods focus on
ensuring the student learns the teacher’s ability to align images and text. TinyCLIP [E3], for
example, employs affinity mimicking for cross-modal distillation and weight inheritance,
though the latter often requires architectural similarity. Other works distill the cross-modal
contrastive loss itself, encouraging the student’s image-text similarity scores to match the
teacher’s [0]. Feature-Level Mimicry: CLIP-KD [B4] provides an empirical study demon-
strating the effectiveness of making the student’s feature embeddings (for both image and
text encoders) directly match those of the teacher, typically using L2 loss. Logit-Based
Distillation: Standard KD techniques applied to the final similarity scores (logits) between
image-text pairs can also be employed, where the student learns to replicate the teacher’s dis-
tribution over potential matches. Specialized Distillation Strategies: Other works address
specific scenarios. DIME-FM [[3] focuses on distilling VLMs with limited unpaired data,
while PromptKD [[@] introduces an unsupervised framework using prompts for domain-
specific distillation.

While these methods have achieved considerable success in compressing VLMs, they of-
ten prioritize the transfer of cross-modal alignment signals or direct feature/logit matching.
The rich, nuanced relational knowledge within each modality (e.g., how similar one image
is to other images, or one text to other texts, according to the teacher) is often not explicitly
targeted. This intra-modal relational understanding, especially regarding subtle differences
among negative samples or fine-grained similarities among positive ones, is crucial for ro-
bust representation learning. Our work distinguishes itself by directly focusing on distilling
these intra-modal similarity distributions, compelling the student to learn a more comprehen-
sive and teacher-aligned internal representational structure. By dynamically weighting the
distillation based on discrepancies in these intra-modal relationships, we specifically target
areas where the student’s understanding is weakest compared to the teacher’s sophisticated
internal landscape.

3 Method
3.1 Overview of CLIP

CLIP [] is a vision-language model that learns visual representations through natural lan-
guage supervision by utilizing contrastive learning. It operates on a dataset of image-text
pairs, denoted as D = {(I, Tj) LD:“, where [ represents an image and 7} is its correspond-
ing textual description. The model employs two distinct encoders: an image encoder f(-)
and a text encoder g(-). These encoders independently map images and texts into a shared

multimodal embedding space. For an image [; and text T, their normalized embeddings are:

) g(Ti)

Vi =T Wk T T
I1f (T |2 18(T) 12
Here, v; and uy represent the normalized embeddings of the image and text, respectively.
The model is optimized using two separate contrastive losses. For a batch of N image-
text pairs, the image-to-text 1oss, Limage-to-text> €Ncouraging image embeddings to align with
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Figure 1: Flow diagram for the Image modality; a symmetric design applies to Text. Here,
f and g are the encoders for Image and Text, respectively, and S and 7' denote the Student
and Teacher components. The left side illustrates the standard loss flow, while the right side
shows the intra-KD loss flow. Gradient paths from weights and alignment loss are indicated,
with elementwise multiplication representing sample weighting.

their corresponding text embeddings, is defined as:
1 N

Eimage-to-text =3 Z
N k=1

—log .
I exp(sim(vy,u;)/7)

exp(sim(vg,u;)/7) ] (D)

Similarly, the text-to-image 108S, Liexi-to-image, €nsures text embeddings align with their cor-
responding image embeddings:
N

1
ﬁtext—to—image = 37 Z
N k=1

J-1 exp(sim(uy, v;)/7)

exp(sim(ug,vi)/7) ] (2)

In these formulations, sim(-,-) denotes the cosine similarity between vectors, and 7 is a
learnable temperature parameter controlling the concentration of the similarity distribution.
The total CLIP loss [[] is the average of these two:

1
LcLp = 5 (ﬁimage—to—text + ﬁtext—to—image) (3)

Optimizing Lcpp encourages both image-to-text (I — 7T') and text-to-image (T — I) align-
ment, enabling the learning of a shared multimodal embedding space where matching pairs
are pulled together and mismatched pairs are pushed apart.

3.2 Background: Common Knowledge Distillation Losses for CLIP

To create smaller, efficient student models from large teacher CLIP models, various knowl-
edge distillation (KD) losses are often employed. These aim to transfer different facets of
the teacher’s knowledge. Let (v1,u!) be embeddings from the teacher model and (v;,u;)
be from the student model.

Embedding Alignment Loss: Directly aligns student embeddings with teacher embed-

dings:

1 N
£embedding1 = N Z ||Vl]<w - Vg“% (4)
k=1

1 N
EembeddingT = ]T] Z ||ll,{ - ll£| |% )
k=1
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Eembedding = Eembedding, + EembeddingT (6)

Logit Distillation Loss: Matches the student’s output probability distributions (derived
from image-text Similarity logits) to the teacher’s Let PIKT . (+) be the probability distribu-
tion for image v/ over all text embeddings {u I¥_| in the batch for model M € {S,T}, and

exp(51m(vk , )/TM)

i exp(Slm(Vf ')/ t)’

PY,, () be for text u}’ over image embeddings. Spemﬁcally, P}‘iT ()=

and similarly for PX . (j). The loss is:

1 N N ' '

Liogity 7 = N kZl Zl KL(PIQT,k(]) | iPIS—>T7k(J)) (7)
= J:
1 N N

‘ClogitT—u = N Z Z PT%Ik HPT—>I k(])) ()
k=1j=1

1
Elogit = E(ﬁlogit,ﬁr + Elogitrﬁ[) ©)

where KL denotes Kullback-Leibler divergence, defined by the formula in Equation (10),
and 7y, Tr are student/teacher temperatures.

. . o PL()
KL(PIQT,k(]) | |PIS—>T,1<(J)) = PIZT,k(J) log PS_>—

(10)
Tk ()

Cross-Contrastive Distillation Loss: Guides the student to learn cross-modal relation-
ships by contrasting student embeddings of one modality against teacher embeddings of the
other:

exp(sim(vy,uj ) /1p) ] (11)

N
L = — log
cross-contrastivey_, 7 N ; ! Zl 1exp(51m(vk,ul )/TD)

N exp sim(wy,vl)/1p
Ecross—contrastiveTHI = 2 ( ( LA )/ ) (12)
= YV exp(sim(u, vl /1p)

1
Ecross-contrastive = 5 (ﬁcross-contrastiveIHT + »Ccross-contrastiveTHI) (13)

where Tp is a distillation temperature. These losses, often combined with Lcpp for the
student, form the basis of many CLIP distillation strategies.

3.3 Proposed Method: Distilling Intra-Modal Relational Knowledge

Our core idea as depicted in Figure 1 is to explicitly transfer the teacher’s understanding of
the relational structure within each modality. The student network is encouraged to align
its intra-modal pairwise cosine similarities with those of the teacher. This alignment is en-
couraged by first defining a student self-consistency objective within each modality (e.g.,
Equation 17). We then introduce an adaptive weighting mechanism (Equation 21) where
the weights are derived from the KL divergence between the student’s and teacher’s full
intra-modal similarity distributions. This directs the student to prioritize learning its self-
consistency for samples where its overall intra-modal view, including off-diagonal relation-
ships, significantly deviates from the teacher’s "relational map", ensuring efficient and tar-
geted knowledge transfer.
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3.3.1 Intra-Modal Similarity Distributions

For a batch of N images with embeddings {v}/}¥_| and N texts with embeddings {u}/ }?' |
from model M € {S, T}, we define intra-modal similarity distributions.

The image-to-image similarity distribution for the k-th image in model M is a probability
distribution P, 1.x(+) over all other images j in the batch:

exp(sim(v', Vi) / Tintra)

. (14)
=1 eXP(Slm(V% V?/[)/Tintra)

P () =

Similarly, the text-to-text similarity distribution for the k-th text in model M is P%’[ STIOF

exp(sim(u/, uz}/l )/ Tintra)

=1 exp(sim (uﬁlv ué\/l) /Tintra)

P%/I—>T,k(]‘) =

(15)

Tintra 15 @ learnable temperature parameter specific to intra-modal distillation, which can
be different for teacher and student, or shared. These distributions capture how model M
perceives the similarity of sample k to all other samples of the same modality within the
batch. The fact that (sim(v}/,v¥) = 1) and (sim(u}!,u}’) = 1) signifies that each sample
exhibits maximum similarity to itself. This principle is pertinent to the discussion in the
subsequent section.

3.3.2 Intra-Modal Relational Distillation Loss (Lintra-KD)

We propose a new distillation loss, Linrakp, to align the student’s intra-modal similar-
ity distributions with the teacher’s. Our approach is designed to encourage the student’s
image-to-image and text-to-text similarity distribution to better match those of the teacher
by minimizing the KL divergence between their respective similarity matrices. By applying
a temperature-scaled softmax and using these divergences to compute adaptive weights, the
model gives more importance to samples with lower discrepancy, helping the student focus
on accurately capturing the relational structure within each modality.

N
Y [~logP’,, (k)] (16)
k

2| =

r_
L=

—

I
=z~
M=

exp (sim(v}, V) / Tintra) ] (17)

—log , :
= [ exp (mm(vi,vi)/‘qma) + Y1k €XP (mm(vi, VIS)/Timra)

Equation (17) defines a loss that encourages the predicted probability PIS >, 1 (k) to be

close to 1, while driving the probabilities PIS >, «(J) for j # k towards 0. Since sim(vf , vi ) =1,

the numerator of the softmax expression—i.e., the logit for the positive pair—is constant

. . S . o . o . . .
across steps. Therefore, increasing Py, (k) requires minimizing the denominator:

min (exp (sim(vi v/ Tintra) -+ Z exp (sim(vi v/ fimra)> (18)
17k

Since the first term is fixed, minimizing the denominator effectively reduces to minimiz-
ing the sum of exponentiated similarities between non-matching pairs:
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min Z exp (sim(vi, Vf)/rimra) (19)
Ik

Optimizing Equation (19) drives the off-diagonal terms P,S ., l,k( Jj) for j # k toward zero.
This is achieved by pushing the cosine similarities of non-matching pairs toward -1 (i.e.,
maximum dissimilarity). Thus, the cross-entropy loss implicitly encourages large negative
similarity values for all non-corresponding pairs.

1 N
T = N Z [—k’gpig—mk(kﬂ (20)
k=1

Initially, the intra-modality losses defined in Equations (17) and (20) are formulated
based on the student’s self-similarity within a modality. In this form, the student is not
yet directly guided by the teacher’s intra-modal understanding for these specific loss com-
ponents. To incorporate the teacher’s relational knowledge and focus the student’s learning,
we introduce an adaptive weighting mechanism based on the KL divergence between the
student’s and teacher’s intra-modal similarity distributions. This can be viewed as a form of
curriculum learning, where the student prioritizes learning relational patterns that it has not
yet mastered relative to the teacher.

N
N
K= | Y KL(PL ()1 PEx ()| 5 where Kj € RY
J=1 k=1
W; = Softmax(K;/c), where W; € RY

21)

Equation (21) defines the calculation of sample-wise importance weights W; (and simi-
larly Wy ). First, K; quantifies the total KL divergence between the student’s PS and teacher’s
PT similarity-derived distributions for each sample k within the batch. W; is then computed
by applying a softmax to K scaled by 1/c, where ¢ is a hyperparameter controlling the
smoothness of the softmax output. These weights (W;, Wr) reflect sample importance. Be-
cause the diagonal elements of teacher and student similarity matrices are fixed pre-softmax,
differences in their distributions arise only from off-diagonal entries (similarities between
distinct samples). The KL divergence thus aligns these off-diagonal similarities. Higher
weights (W; or Wr) are assigned to samples where the student’s relational structure deviates
most from the teacher’s (i.e., high Kj), directing focus to these "difficult" examples ("most
wrong" areas), akin to hard negative mining. Crucially, W; and W7 remain differentiable and
part of the gradient flow during training.

N
Lisr=Y Wik [—logP, igl,k(k)}
= (22)

N
Ly = Z Wr g - [_ longaT,k(k)}
k=1

Lintra-xp = L1+ Lro1 (23)
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Table 1: Ablation analysis of intra-modal distillation components using a ViT-T/16 student
and a LAION-400M pretrained ViT-B/16 teacher, with CC12M+CC3M as the distillation
corpus. Results are presented for classification (ImageNet variants) and cross-modal retrieval
(CC3M, MSCOCO, Flickr).

IN INV2 IN-R IN-S | CC3M Val | MSCOCO |  Flickr

Method Acc  Acc  Acc  Acc | 2T T2 | 2T T2I | 2T T2I
T: ViT-B/16 | 67.1 596 779 5237 | 438 423395 365|769 755
S: VIT-T/16 305 256 357 173 | 333 335|207 203 | 464 477
+ Landard 418 360 469 261 | 372 360 | 267 258 | 593 577
+ Lintra KD 433 371 496 278 | 382 364|282 263|604 60.1

w/ Uniform Weights | 42.1 364 483 27.1 | 379 365 | 28.1 262 | 603 57.1
Weights w/ No Grad | 429 37.0 495 27.1 | 382 364 | 279 257 | 60.2 589
Weighted w/ Lopp | 42.6 367 489 276 | 38.6 36.7 | 279 256 | 599 58.1

w/o L1 424 366 478 268 | 37.6 364|279 263|592 592
w/o LT 427 367 488 272 | 380 359|284 254|611 588

3.3.3 Opverall Training Objective

The student model is trained by minimizing a combined loss function. This includes the
standard CLIP contrastive loss EgLIP (Eq. 3) applied to student model outputs and ground-
truth pairs), our proposed intra-modal relational distillation loss Linya-kp, and the standard
distillation losses, ﬁembedding (Eq- 6), Elogit (Eq. 9), or Leross-contrastive (Eq. 13)).

ﬁstandard =0 ﬁembedding + B : »Clogit +7- Ecross-contrastive (24)

The overall objective is:

ﬁtotal - LéLIP + £standard + 0- Eintra—KD (25)

where @, B ¥, and O are hyperparameters balancing the contributions of the different loss
terms. Through L. kD, our method transfers crucial within-modality relational knowledge,
leading to more robust and teacher-aligned student models.

4 Experiments

We evaluate our intra-modal KD approach on classification (ImageNet (IN) [H], IN-V2 [IZ],
IN-R [], IN-S [BA]) and retrieval (CC3M val, MSCOCO [[d], Flickr30K [Bd]). We analyze
loss contributions, training configurations, and teacher-student pairings. Appendices A, B
provide full experimental details. The teacher is a LAION-400M [EZ4] pretrained encoder;
distillation uses CC12M [H] + CC3M [ET]. Further results are presented in Appendix C.

4.1 Ablation Study

Our ablation study (Table 1) analyzes each component’s impact on the ViT-T/16 student.
The baseline student’s 30.5% ImageNet top-1 accuracy is lifted by 11.3% (to 41.8%) with
standard distillation (Lgandard)- This also substantially boosts R@1 retrieval scores by 3.9%
on CC3M, 6.0% on MSCOCO, and 12.9% on Flickr for I2T tasks.

Crucially, our proposed intra-modal loss (Linga-kD), incorporating adaptive KL-weighting,
further improves ImageNet top-1 accuracy by an additional 1.5% (to 43.3%) and enhances
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Table 2: Zero-shot performance comparison of the proposed method (’Our’) against base-
lines (TinyCLIP, CLIP-KD) across different student architectures (ViT-T/16, ViT-B/16,
ResNet-50) and teacher models on ImageNet-1K classification and MSCOCO/Flickr re-
trieval. Teacher models were pretrained on LAION-400M, and distillation utilized the
CC12M+CC3M dataset.

IN-1IK | MSCOCO Flickr

Method Acc | 2T T21 | 2T T21
T, Vil-L/14 728 | 427 409 | 805 795
T,: ViT-B/16 67.1 | 395 365|769 755
S: VIT-T/16 306 | 207 203 | 46.4 477

+TinyCLIP (from Ty) 39.3 264 24.1 | 57.6 574
+TinyCLIP (from Tj) 40.8 26.8 247 | 58.6 58.5
+CLIP-KD (from Ty) 40.9 272 255 | 59.7 59.7
+CLIP-KD (from Tj3) 42.6 28.1 260 | 604 59.9

+Our (from T;) 40.9 273 258 | 59.8 60.0
+Our (from Ty) 43.3 28.2 263 | 604 60.1
S: ViT-B/16 37.0 250 247 | 54.6 56.6

+TinyCLIP (from Ty) 55.4 359 336 | 732 728
+CLIP-KD (from T;) 57.5 37.6 356 | 753 745

+Our (from Ty) 59.3 38.7 371 | 76.3 75.8
S: ResNet-50 35.3 23.5 247 | 551 55.0
+CLIP-KD (from T») 554 36.3 334 | 73.0 722
+Our (from T») 56.1 36.1 339 | 73.0 70.8

R@1 retrieval by 1.0% on CC3M (12T), 1.5% on MSCOCO (I2T), and up to 2.4% on Flickr
(T2I: 60.1 vs 57.7). These results underscore the efficacy of adaptively modeling intra-modal
consistency alongside cross-modal alignment.

We explored different weighting strategies for Linraxkp. Our proposed adaptive KL-
weighting (row "+ Lingakp") generally outperforms using uniform weights or weights de-
tached from the gradient graph ("Weights w/ No grad"), particularly on classification tasks
and Flickr retrieval. For instance, adaptive KL-weighting yields 43.3% IN Acc, compared
to 42.1% for uniform weights and 42.9% for no-gradient weights. While weighting sample
contributions with L¢pp did lead to a 0.4% gain in CC3M I2T R@1, it negatively impacted
performance on other datasets. This suggests a benefit to dynamically and differentiably
balancing loss contributions based on student-teacher intra-modal disagreement.

Finally, experiments removing either the image-specific intra-modal loss component
L1 or the text-specific one L7_,7 from our full L. kp (With adaptive KL-weights) indi-
vidually showed that the complete method generally achieves better or competitive results.
For example, removing L;_,; slightly drops IN Acc to 42.4%, while removing Lr_,7 drops
CC3M T2I R@1 from 36.4% to 35.9%. While minor variations exist (e.g., MSCOCO T2I
for w/o L;_,1), the overall trend supports the inclusion of both components.

4.2 Zero-Shot Evaluation

Table 2 details the zero-shot evaluation of our method against baselines (TinyCLIP, CLIP-
KD) across ViT-T/16, ViT-B/16, and ResNet-50 students. These were distilled from LAION-
400M pretrained teachers using the CC12M+CC3M dataset.

Our approach consistently demonstrates superior performance. For the ViT-T/16 student
(distilled from T3), our method achieves 43.3% ImageNet top-1 accuracy, outperforming
TinyCLIP by 2.5% and CLIP-KD by 0.7%. It also leads in retrieval, with R@1 gains such
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as +1.4% on MSCOCO I2T, while achieving state-of-the-art Flickr30K performance (e.g.,
+0.2% T2I R@1 compared to CLIP-KD). Consistent with CLIP-KD, ViT-B/16 is a more
effective teacher than ViT-L/14 for ViT-T/16.

With a ViT-B/16 student (from Tj), our method reaches 59.3% on ImageNet (+1.8% vs.
CLIP-KD, +3.9% vs. TinyCLIP), and improves R@1 scores by up to 1.1% on MSCOCO
and 1.0% on Flickr over baselines.

This efficacy generally extends to the ResNet-50 backbone (distilled from T;), where
our method increases ImageNet accuracy by 0.7% over CLIP-KD (56.1% vs 55.4%). On
retrieval tasks, it delivers competitive performance, for example, improving MSCOCO T2I
R@1 by +0.5% (33.9% vs 33.4%) over CLIP-KD, though CLIP-KD maintains a slight edge
on Flickr T2I for this specific student. Such trends of improved or competitive performance
across diverse architectures highlight our framework’s potential robustness and broad appli-
cability.

5 Conclusion

We proposed an intra-modal knowledge distillation approach that efficiently transfers knowl-
edge from large vision-language models to compact student networks. By integrating stan-
dard and intra-modal losses with tailored weighting strategies, our method consistently boosts
student performance in both ablation and zero-shot evaluations, surpassing previous tech-
niques in classification and retrieval benchmarks. Future research will extend this framework
by incorporating diverse CLIP variants alongside other multimodal and unimodal models to
leverage their architectural and training differences, thereby enriching the knowledge source
for distillation. Furthermore, we will conduct rigorous experiments to determine the optimal
selection of the hyperparameters @, 3, v, and d in our total loss function (Eq. 25).
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Intra-Modal Divergence-Weighted Distillation for
Vision-Language Models Supplementary Materials

A Training Settings

Visual encoder Text encoder: Transformer [EI]

Model Type | Params | Layer | Width | Head | Params
ViT-L/14 [B] 304.0M 12 768 12 85.1M
ViT-B/16 [B] 86.2M 12 512 8 37.8M
VIT-T/16 [B] ViIT 1 56m

MobileViT-S [[d] 5.3M 12 384 6 21.3M
Swin-T [[2] 27.9M

ResNet-50 [H] 38.3M 12 512 8 37.8M
ResNet-18 [H] CNN 11.4M

MobileNetV3 [[] 2.0M 12 384 6 21.3M
EfficientNet-BO [EO] 4. 7TM

Table 3: Comparison of visual and text encoder configurations.

We perform knowledge distillation by training our models on the combined Conceptual
Captions 3M (CC3M) and Conceptual 12M (CC12M) datasets. The teacher models are
typically pretrained on LAION-400M, except for those referenced in Table 5, which are both
pretrained and distilled using the CC3M+CC12M dataset. Comprehensive configuration
details for both the training and pretrained models are provided in Table 3.

Training is optimized using the AdamW optimizer with an initial learning rate of 0.001
and a weight decay of 0.1. We adopt a cosine learning rate schedule with a linear warm-up
phase over the first 10,000 iterations, spanning a total of 32 epochs. All experiments are
conducted on 8 NVIDIA A100 GPUs with a total batch size of 1024, distributed as 128
samples per GPU.

The distillation loss components are weighted as follows: o = 2000, B = 1.0, and y =
1.0, where 7 is selected based on best performance from the range {0.5,1,1.5,2}, following
the CLIP-KD setup [E]. We also set 6 = 1. Learnable temperature parameters T, Ty, Tp,
and T;,;,, are all initialized to 0.07. All other training hyperparameters are aligned with those
used in the original CLIP model [[ZT].

In addition, the hyperparameter ¢ for the sample weighting strategy is set to 0.006, se-
lected from the candidate values {0.006,0.001,0.01,0.1, 1} based on empirical performance.

B Testing Settings

We evaluated the zero-shot classification performance of our models on several benchmark
datasets, including ImageNet (IN) [H], ImageNet-V2 (IN-V2) [[A], ImageNet-Rendition (IN-
R) [[], and ImageNet-Sketch (IN-S) [EX]. For retrieval tasks, we assessed performance on
the CC3M validation set [[d], MSCOCO [[[™], and Flickr30K [Ed].

Consistent with standard evaluation protocols, we used Recall@K (R@K) to measure
retrieval accuracy among the top-K nearest neighbors. Our primary metrics were top-1 ac-
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curacy (Acc) for image classification, and Recall@1 (R@1) for both Image-to-Text (I2T)

and Text-to-Image (T2I) retrieval tasks. Details on dataset sizes and splits are provided in
Table 4.

Dataset | Split | Number of Samples
Image Classification
ImageNet (IN) Val 50,000
ImageNet-V2 (IN-V2) Test 10,000
ImageNet-Rendition (IN-R) | Test 30,000
ImageNet-Sketch (IN-S) Test 50,000
Cross-Modal Retrieval
CC3M Val 13,000
MSCOCO Test 5000
Flickr30K Test 1000

Table 4: Dataset Sample Counts

C Additional Experiments

Table 5: Performance of various architectures with and without knowledge distillation on
ImageNet classification and cross-modal retrieval tasks. The distillation dataset and pre-
training data for all models is CC12M+CC3M.

Method IN INV2 IN-R IN-S | CC3M Val | MSCOCO Flickr
Acc Acc Acc Acc | I2T T2I | I2T T2 | 2T T2I
T: ViT-B/16 ‘ 37.0 321 48.4  26.0 ‘ 40.2 395 ‘ 25.0 247 ‘ 54.6 56.6
S: Mobile ViT-S 326 276 395 20.1 | 36.0 356|223 229 | 50.1 530
+CLIP-KD 36.0 31.1 445 235 | 394 38.6 | 26.1 249 | 550 56.2
+Our 369 31.8 46.0 243 | 39.5 38.8 | 264 25.0 | 56.3 57.6
S: Swin-T 364 31.1 459 244 | 398 392|247 253|534 544
+CLIP-KD 40.2 349 514 282 | 437 425|285 286 | 622 60.9
+Our 40.7 35.2 533 292 | 439 42.7 | 29.0 28.7 | 60.2 64.3
S: MobileNetV3 25.1  20.7 202 134 | 28.1 275|153 150 | 369 38.0
+CLIP-KD 27.0 23.0 30,6 14.1 | 30.1 28.6 | 17.9 16.0 | 424 423
+Our 256 223 304 144 | 297 282 | 175 158 | 403 39.5
S: EfficientNet-BO | 32.6  27.8 409 20.7 | 354 349 | 21.7 21.1 | 48.3 50.1
+CLIP-KD 354 30.6 447 237 | 39.0 38.0 | 26.0 239 | 555 542
+Our 355 303 458 243 | 39.2 38.1 | 26.0 24.0 | 55.6 56.6
S: ResNet-18 28.6 24.0 353 18.1 | 31.1 304 | 192 186 | 41.0 433
+CLIP-KD 314 269 39.2 200 | 342 33.0 | 21.3 198 | 47.8 47.1
+Our 309 271 389 20.6 | 33.8 324|215 19.6 | 494 473

Table 5 presents a comprehensive evaluation of our proposed intra-modal knowledge
distillation method ("+Our") against the "+CLIP-KD" technique and baseline student models
across five diverse architectures: Mobile ViT-S, Swin-T, MobileNetV 3, EfficientNet-B0, and
ResNet-18. The evaluation covers ImageNet classification variants and cross-modal retrieval
on CC3M Val, MSCOCO, and Flickr30K, with a ViT-B/16 teacher and CC12M+CC3M for
distillation. Overall, our proposed method demonstrates superior or highly competitive per-
formance. For instance, with the Mobile ViT-S student, our approach consistently achieves
the best results, improving IN accuracy by 0.9% over CLIP-KD to 36.9% and enhancing



ADDAD, LECHERVY, JURIE: INTRA-MODAL DIVERGENCE-WEIGHTED DISTILLATION 3

Flickr I2T R@1 by 1.3%. Similarly, when applied to the Swin-T student, our method gener-
ally leads, increasing IN accuracy by 0.5% to 40.7% and MSCOCO I2T R@1 by 0.5% com-
pared to CLIP-KD, although CLIP-KD shows a stronger result on Flickr 12T, our method
excels on Flickr T2I. With CNN-based students like EfficientNet-B0, our method often pro-
vides slight advantages or matches CLIP-KD, such as a 0.1% gain in IN accuracy and better
performance on IN-R, IN-S, and Flickr T2I. For ResNet-18, the results are more nuanced:
our method shows strengths on IN-S and Flickr retrieval tasks, while CLIP-KD leads on
IN accuracy and IN-R. A notable exception is the MobileNetV3 student, where CLIP-KD
generally outperforms our method across most metrics, though our approach does secure
a slight edge on the IN-S benchmark. Despite this, the experiments broadly indicate that
our distillation strategy is effective across varied student architectures, frequently offering
an advantage over CLIP-KD, particularly for Transformer-style students and on several re-
trieval tasks, and consistently uplifts performance significantly from the student baselines.
The relatively smaller gains for CNN-based students may be attributed to suboptimal hyper-
parameter choices, which were initially tuned for Transformer architectures and may require
adjustment for CNNs.



