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Abstract—Dynamic early-exiting neural networks have been
proposed for image classification to balance the trade-off between
classification performance and inference cost. In this context, we
propose a multi-exit neural network architecture that exploits
the power of attention mechanisms, which improve performance
but incur significant computational overhead. In CHASE, we
introduce two attention-like mechanisms to go beyond existing
multi-exit architectures. The first mechanism dynamically adjusts
the importance of different feature channels and spatial locations,
recalibrating channel-wise feature responses. The second mecha-
nism, based on self-attention, aggregates features from different
spatial locations at the end of the network. We evaluate the
proposed architecture on the CIFAR and ImageNet datasets,
comparing it with the original network and other state-of-the-
art approaches. Our results show that the proposed architecture
achieves competitive performance in terms of accuracy and
computational efficiency.

I. INTRODUCTION AND RELATED WORK

Deep learning has revolutionized computer vision through
architectures like EfficientNet [1], [2], ResNet [3], and
DenseNet [4], achieving state-of-the-art performance. How-
ever, increasing model complexity for higher accuracy raises
computational demands. While attention mechanisms [5], [6]
enhance feature focus, they increase computational costs.

Recent research has explored the integration of CNNs
and attention mechanisms to create hybrid architectures that
exploit the strengths of both approaches. CNNs excel at
extracting local features and spatial hierarchies, while attention
mechanisms are powerful at capturing long-range dependen-
cies and focusing on relevant features. However, attention
mechanisms can be computationally expensive due to their
quadratic complexity with respect to the input sequence length.
Several notable hybrid architectures have been proposed, such
as LeViT [7], which presents a Conv-like design to speed
up vision transformers, although Multi-Head Self-Attention
(MHSA) remains computationally intensive on edge resources.
EfficientFormer [8] introduces convolutional processes in the
early stages and maintains attention in the final stages, while
Mobile-Former [9] incorporates a parallel design of MobileNet
and Transformer with a two-way bridge in between.

Dynamic early exit networks have emerged as a promising
solution to balance performance and efficiency. These net-
works introduce auxiliary classifiers or ”exits” at different
network depths, allowing adaptive inference by stopping the
process earlier when the desired confidence level is reached.
This approach reduces the overhead, especially for simpler
samples. Key developments in dynamic early exit include

BranchyNet [10], which introduced the concept of attaching
classifier heads at different depths within the backbone, and
MSDNet [11], which uses dense connections and a multiscale
structure to mitigate interference between classifiers. RANet
[12] performs early exiting first on low resolution features
and then on high resolution features, while DVT [13] and
CF-ViT [14] use full attention mechanisms and start early
exiting with a small number of tokens and gradually increase
to more tokens. Dyn-Perceiver [15] decouples the backbone
and classifier to solve the interference problem, and L2W [16]
proposes to assign a weight to each sample and train the whole
network using meta-learning. Recent post-hoc methods such
as Calibrated-DNN [17] and EENet [18] offer sophisticated
ways to compute and calibrate final scores, ensuring proper
calibration when choosing which classifier to exit.

While the literature on dynamic early exit networks has
evolved with advances in architectures, sample importance
assignment, and post-hoc methods, the integration of attention
mechanisms has been limited and often restricted to classifier
branches or a few exits due to computational cost. In this
work, we propose a novel framework that synergistically
combines CNNs and attention mechanisms to improve the
performance and efficiency of dynamic early exit networks.
By integrating these complementary components, we aim to
balance local feature extraction with global context aware-
ness. Our contributions include a novel architecture that fuses
CNNs with attention mechanisms to enhance performance, a
computationally efficient design that judiciously positions self-
attention in the final stage while using squeeze and excitation
for channel weighting in earlier stages, and extensive experi-
mentation and validation on the CIFAR and ImageNet datasets
to demonstrate the effectiveness and competitiveness of our
proposed architecture with other dynamic neural networks.

II. CHASE’S ARCHITECTURE

The proposed model, CHASE, builds upon the fundamental
structure of MSDNet [11], a multi-scale, multi-output image
classification model. It begins with a stem layer, whose role
is to process images by transforming the initial RGB repre-
sentation into a more compact yet informative representation.

This initial reduction in image size decreases the total num-
ber of FLOPs required for subsequent processing. We adopt
the stem layer design from Addad [19], which demonstrated its
efficiency and ability to enhance representativeness. The stem
layer consists of four sequential convolutional layers, including



x
1
0

x
2
0

x
3
0

S � C

S � C

x
1
1,1

x
2
1,1

x
3
1,1

. . . x
1
1,`last

. . .

. . .

x
2
1,`last

x
3
1,`last

Block = 1

Eq4

Eq4

Eq4

?

Eq3 Eq4

?

Eq3

x
2
2,1

x
3
2,1

. . .. . .

. . .

x
2
2,`last

x
3
2,`last

Block = 2

Eq4

Exit Exit

Eq3 x
3
3,`last

x
3
3,1

GAL

. . .

Block = 3

Exit

GAL : Global Attention Layer

Exit : Classifier

S � C : Strided Conv

? : Empty set (no previous scale)

Identity

Exit Exit

Fig. 1: Illustration of the proposed architecture, with S = 3 scales. It consists of 2 convolution blocks and an attention block,
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0 is the feature map from the stem.
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TABLE I: The different feature map computed in block b that
make up our architecture. Scale 1 can be seen as a ”fusion”
with scale 0, which consists of empty elements.

strided convolutions, depth-wise convolutions, and a residual
connection. It generates lower-resolution representations that
are then fed into the subsequent layers of the network.

Regarding the subsequent layers, CHASE follows principles
common to most previous works, [11], [12], [19], consisting
of a repetition of identical blocks as illustrated in Figure 1.
After each block, the network can either exit by passing
the computed representations through a classifier or transmit
the representations to the next block, allowing for dynamic
adjustment of the network’s depth. Each block refines the
representation for the classification task and adds a new exit.
Each block operates on multi-scale feature map denoted as
x
s

b
, where s represents scale, and b stands for block number.

x
1
0 refers to the feature map derived from the stem. These

blocks contain intermediate layers indexed by `, with x
s

b,`

representing the feature map of scale s in block b inputted
to a layer at depth ` within that block. The layers at depth `

are structured into two configurations: f
s

b,`
(.) and h

s

b,`
(.), as

depicted in Figure 2 (a). fs

b,`
(.) divides the spatial resolution

by 2, while h
s

b,`
(.) keeps it, allowing the scales to be aligned

for fusion. The fusion stage in CHASE is the same as in [19].
This design facilitates the transfer of information from higher
to lower resolutions, preserving semantic information as the
network’s depth grows. The fusion operation, depicted in Eq.
1, encapsulates this process.
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⌘
, (1)

where � is the feature map concatenation operator along the
channel axis. Employing Eq. 1 adheres to the conventions
where f(?) = h(?) = ? and x � ? = x. Table I illustrates
an example of how to calculate the feature map for a block b

consisting of 3 scales and 4 layers.

Between the block b and b+1, the maximum scale of feature
map is discarded. This is achieved as follow:

8b, s, `,with s < b, x
s

b,`
= ?, (2)

Eq. 1 can be used to define the feature map of other
layers, even at scale s < b. When the maximum scale of the
feature map is discarded, a transition layer Tb is introduced.
Tb conducts a 1⇥ 1 convolution, followed by BatchNorm and
GELU activation. Its role is to reduce the size of the feature
map by a specified reduction factor, which is set to 0.5 in this
context. This prevents an increase in the size of the feature
map. The input of the block b+ 1 is computed as follow:

x
s

b+1,0 = Tb(xs

b,`last
) (3)

In the following sections, we detail the core of our approach,
which involves incorporating self-attention at the lowest res-
olution and introducing an additional attention mechanism
through channel weighting at intermediate resolutions.

A. Global Attention Layer (GAL)

Self-attention mechanisms have proven useful in recent
architectures such as Visual Transformers [5], acting as a
substitute for convolutional layers. However, self-attention
token mixers result in notable computational overhead, es-
pecially at high resolutions. This complexity is expressed as
O(HWC

2 + (HW )2C) for a feature map X 2 RH⇥W⇥C ,
where H , W , and C denote height, width, and channel
count, respectively. The first term, HWC

2, encompasses the
computational complexity of query, key, and value projections.
This term dominates the overall complexity when C is large,
which typically occurs in the later blocks of the network. The
second term, (HW )2C, pertains to the attention computation
itself. This term becomes the dominant factor when H and W

are large, which is the case in the initial blocks of the network.
It should be noted that in this type of multi-exit architecture,
the maximum size of the images decreases exponentially as
they pass through the blocks.



Fig. 2: Illustration of CHASE’s components: The ’Fusion
Block’ module represents the h function or both, withL

l

i=0 x
s�1
b,l+1 as an empty set. ’GAL’ is the Global Attention

Layer, using Conditional Positional Encoding (CPE) for posi-
tional embedding. ’CAM’ stands for Channel-level Attention
Mechanism. Here, s is the current scale, b the current block,
and l the current layer.

We address computational efficiency by incorporating at-
tention exclusively in the final block (Fig. 2b), leveraging its
benefits while controlling costs. This design routes the most
challenging examples—fewer in number—to the network’s
final stage for enhanced processing. Empirical validation (see
Experiments) confirms the approach’s efficacy. The Global At-
tention Layer [20]–[22] dynamically focuses the classifier on
critical input regions, using conditional positional encodings
[23], [24] generated from local token neighborhoods.

B. Channel-level Attention Mechanism (CAM)

In the previous section, we noted that self-attention is
computationally costly for high-resolution feature map. How-
ever, we believe that attention is important and aimed to
introduce a cheaper mechanism by incorporating attention
at the channel level of the feature map, which has a much
lower computational cost. This channel weighting mechanism
is integrated into the convolution layers for high-resolution
feature map. We achieve this by incorporating a squeeze and
excitation layer, as proposed by [25]. Figure 2 (c) illustrates the
composition of Channel-level Attention Mechanism (CAM). It
involves a sequence of transformations, including global pool-
ing, followed by a 1⇥ 1 convolution (with GELU activation)
without batch normalization, which reduces the number of
channels by a factor of r (we find r = 2 to be effective).
This is followed by another 1⇥1 convolution (without GELU
activation or batch normalization). The CAM layer ends with a
sigmoid activation. This process culminates in a channel-wise
recalibration, achieved through element-wise multiplication,
emphasizing the most informative channels while suppressing
the less relevant ones. Consequetely, we replace the Eq. 1,
immediately preceding the fusion in layers f

s

b,`
and h

s

b,`
, by

Eq. 4.
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The fusion layer amalgamates features from various scales,
resulting in a more intricate representation that encompasses
multiple abstraction levels. However, as elucidated in the
introduction, not all channels or features contribute equally
to the final representation in many instances. The primary
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Fig. 3: Accuracy (top-1) of budgeted batch classification
models as a function of average computational budget per
image on CIFAR-10 (left) and CIFAR-100 (right).

objective of the channel compression layer is to dynamically
reassign weights to and decorrelate each channel. This ensures
that the most pertinent features are accentuated, while less
significant ones are downplayed.

C. Classifiers and loss function

Each exit k of the network has its own classifier gk,
comprising two convolutional layers followed by an average
pooling layer and a fully connected layer. For the final output
with an attention layer, the layer output is reshaped into a 2D
feature map before being sent to the classifier.

The loss function L, which is optimized during the training
of the network, combines the loss functions of the individual
exits, as follows:

L = 1
N

P
N

n=1

P
K

k=1 CE
⇣
gk(x

smax
bk,`k

), yn
⌘

(5)

Where CE represents the cross-entropy loss, N stands for
the total number of training samples, K denotes the number
of exits, gk refers to the k

th classifier, and yn represent
the ground truth label of the n

th sample. The loss function
gives equal importance to each gk. The K exits are placed
every  layer of the B blocks, with the input for the k

th

classifier denoted as x
smax
bk,`k

(with the dependency on the n
th

example omitted for notation simplicity). smax corresponds
to the smallest resolution. Based on the decomposition of
the total layer count into the base `last, we can derive that
bk =

l
(k�1)
`last

m
and `k = (k ⇥ ) modulo `last. The symbol

d·e denotes the ceiling function, which rounds up to the nearest
integer. If an exit occurs between two blocks, the input for the
classifier comes after the transition layer. The last classifier
uses the output of the last layer xsmax

B,`last
.

III. EXPERIMENTS

A. Experiments with CIFAR

The results for Budgeted Batch Classification on CIFAR-
10 and CIFAR-100 are presented in Fig. 3, highlighting
performance in identifying optimal models across various
computational budgets. Accuracy is computed on the test
set, resulting in plotted curves for MSDNet [11], RANet
[12], L2W-MSDNet [16], and our model. Our method shows
better performance than L2W-MSDNet [16]. Nevertheless,
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Fig. 4: ImageNet top-1 accuracy as a function of computa-
tional budget. Left: anytime prediction. Right: budgeted batch
classification.

for budgets exceeding 3 ⇥ 107 FLOPs, our method clearly
outperforms L2W-MSDNet [16] in CIFAR-100. Additionally,
for budgets exceeding 2⇥107 FLOPs, our model outperforms
L2W-MSDNet [16] in CIFAR-10. To achieve 95% accuracy
on CIFAR-10, our CHASE requires only 2.7⇥107 FLOPs, and
on CIFAR-100 it achieves 79% accuracy with only 5.5⇥ 107

FLOPs. In addition, CHASE achieves a superior level of
accuracy comparable to MSDNet [11] while operating within
a constrained budget of only 2.5 ⇥ 107 FLOPs for CIFAR-
10 and 3.6 ⇥ 107 FLOPs for CIFAR-100. It also achieves
the highest accuracy comparable to RANet [12] using only
2.8⇥ 107 FLOPs.

B. Experiments with ImageNet

Anytime prediction Experiments. Performance in the any-
time prediction setting is given on the left side of Fig. 4. Our
approach achieves 81.29% accuracy with 2.6 ⇥ 109 FLOPs,
outperforming all methods, including the penultimate exit’s
79.53% at 2.15 ⇥ 109 FLOPs. Compared to MSDNet [11],
RANet [12], GFNet [26], and L2W-MSDNet [16], our model
surpasses their final classifiers with over 34% fewer FLOPs
than MSDNet and up to 50% fewer than RANet and GFNet.
Against L2W-MSDNet, it achieves 76.30% with 40% fewer
FLOPs. For transformer-based models, it performs comparably
to DVT [27] with 38% fewer FLOPs and outperforms CF-
ViT [14] using 33% fewer FLOPs. Similarly, it matches Dyn-
Perceiver [15]’s 79.6% accuracy with 50% fewer FLOPs.

Budgeted Batch Classification Experiments. Results are
shown on the right-hand side of Fig. 4. With a budget of
2.0 ⇥ 109 FLOPs, CHASE achieves 81.22% accuracy, out-
performing competitors. At 1.0⇥109 and 0.6⇥109 FLOPs, it
achieves 77.57% and 71%, respectively. Compared to convo-
lutional models like MSDNet [11], RANet [12], GFNet [26],
and L2W-MSDNet [16], CHASE achieves superior accuracy
with fewer FLOPs: a 57% reduction compared to MSDNet,
62% to RANet, 56% to GFNet, and 45% to L2W-MSDNet.
For transformer-based models, CHASE surpasses DVT [27]
for budgets over 0.9⇥ 109 FLOPs, using 55% fewer FLOPs.
Below 0.9 ⇥ 109, DVT shows slight superiority. CHASE
outperforms CF-ViT [14] with 51% fewer FLOPs and exceeds
Dyn-Perceiver’s performance with nearly 60% less FLOPs.
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Fig. 5: Top-1 accuracy when GAL (Global Attention Layer)
or CAM (Channel-level Attention Mechanism) are removed
from our model.

Combining MSDNet [11] with EENet [18] or Calibrated-DNN
[17] yields methods that perform equal to or worse than the
original MSDNet, with no significant improvement observed.

C. Ablation Study on ImageNet

Fig. 5 showcases the performance of CHASE after the
removal of the CAM layer and Global Attention layer, there
is a decline of more than 1.5% in performance for an identical
budget, resulting in an accuracy of 79.68% with 1.91 ⇥ 109

FLOPs. In contrast, when these layers are included, CHASE
achieves an accuracy of 81.22% with a computational cost of
just 2 ⇥ 109 FLOPs, and it attains 62.35% accuracy with a
significantly reduced cost of 0.3 ⇥ 109 FLOPs. Exclusively
considering the CAM layer results (the orange curve) in a
performance decrease of over 0.75% for a budget of 1.94⇥109

FLOPs. The cyan curve in the Fig. 5 represents the results
obtained by incorporating an Global Attention Layer into the
last scale of the two final blocks. This brings the performance
to 81.6% with 3.19 ⇥ 109 FLOPs in anytime prediction and
81.56% with 2.43⇥ 109 in budgeted classification. However,
the cost experiences an increase of more than 15% for a rela-
tively small gain of 0.3% on accuracy. Exclusively considering
the GAL layer results on the worst performance for FLOPs
lower than 1.3⇥109. In comparison to CHASE, accuracy lags
behind by approximately 1% to 2% depending on budget.

IV. CONCLUSIONS

Our study explored dynamic early exit networks, aiming to
optimize computational resources in computer vision tasks. We
introduced CHASE, a novel architecture blending CNNs with
attention mechanisms for improved efficiency and accuracy.
Through rigorous evaluation on ImageNet dataset, CHASE
demonstrated competitive performance compared to existing
dynamic neural network architectures.
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