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Abstract

In this paper, we propose a test-time resource-efficient

neural architecture for image classification. Building on

MSDNet [12], our multi-exit architecture excels in both

anytime classification, which allows progressive updates

of predictions for test examples and facilitates early out-

put, and budgeted batch classification, which allows flexi-

ble allocation of computational resources across inputs to

classify a set of examples within a fixed budget. Our pro-

posed multi-exit architecture achieves state-of-the-art per-

formance on CIFAR10 and CIFAR100 in these two critical

scenarios, thanks to a novel feature fusion building block

combined with an efficient stem block.

1. Introduction and related works

State-of-the-art convolutional neural networks (CNNs)
such as EfficientNet [25, 26], ResNet [7], and DenseNet
[13] possess remarkable network depth, enabling them to
achieve exceptional accuracy. However, these deep mod-
els often incur significant computational costs, making real-
time inference unattainable on resource-constrained plat-
forms such as smartphones, wearable health monitoring de-
vices, or robotic platforms.

In recent years, considerable efforts have been made to
improve the inference efficiency of deep CNNs. Various
approaches have been explored, including efficient architec-
ture design [4, 34, 11, 10], network pruning [5, 8, 31, 20],
weight quantization [17, 14, 23, 16], knowledge distilla-
tion [9, 18, 1], and adaptive inference [28, 12, 6, 30, 19].
Notable contributions in this area include MobileNet [11],
ShuffleNet [34], and SqueezeNet [15], which introduced in-
novative strategies such as depth-wise convolutions, chan-
nel shuffling, and fire modules to minimize computational
effort while maintaining satisfactory accuracy. In addition,
recent advances in neural architecture search (NAS) [29, 2]
and knowledge distillation [3, 9] have also played a key role

in producing compact and efficient models without signif-
icant performance degradation. As the importance of effi-
cient neural networks continues to grow, this paper aims to
enrich ongoing efforts by presenting a novel approach that
further enhances model efficiency in specific real-world ap-
plications.

Adaptive inference aims to reduce computational redun-
dancy on ”easy” examples. Specifically, this method in-
volves designing a model with the ability to intelligently se-
lect specific segments of the network to execute during test
time, depending on the input it receives. ”Easy” samples
require less computation than ”hard” ones. An example of
an adaptive inference technique is early exit [12, 30, 22, 6].

Dynamic Early Exit Networks create multiple classifiers
within the depth of a network, enabling rapid prediction
of high-confidence samples at early stages (easy samples)
without activating deeper layers. This recognizes that not
all samples require the same model complexity for accurate
prediction. Unlike traditional architectures, dynamic early-
exiting networks introduce branching points [27] at differ-
ent depths to assess prediction confidence early. Shallow
classifiers provide fast predictions for simple samples, sav-
ing computation, while complex samples progress through
deeper layers for accurate predictions at a slightly higher
cost, balancing efficiency and accuracy. In addition, these
networks adapt inference based on resource and latency re-
quirements, prioritizing early exit for speed or exploring
deeper branches for improved accuracy.

MSDNet, proposed by Huang et. al. [12], is a leading ap-
proach for dynamic early exit that effectively addresses two
main challenges to achieve resource-efficient image classi-
fication. The first challenge, where classifiers change the
internal representation, is solved by using dense connectiv-
ity [13], which prevents the dominance of a single early exit
and balances the tradeoff between early and later classifica-
tion through the loss function. The second challenge, the
lack of coarse-scale features in early layers, is addressed by
employing a multiscale network structure. At each layer,
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Figure 1: The proposed architecture operates with S = 3 scales. It consists of two blocks, with a reduction in the number of
scales within each successive block. F represents the concatenation operator, while T denotes the transition operator.

the network produces features of all scales, from fine to
coarse. MSDNet has served as the basis for a number of
other works, such as those by Meronen et. al. [21].

One limitation of MSDNet lies in the way it reuses pre-
viously computed features, as the last features of each scale
are not shared with subsequent scales. To overcome this
limitation, we present a novel fusion layer that improves
the reuse of previous features. In addition, we introduce a
novel stem that effectively limits the overall computation of
the network, further improving its efficiency.

2. Method

The proposed method extends the foundational princi-
ples of MSDNet [12]. The architecture of our model is
given in Fig. 1. As mentioned in the introduction, it in-
cludes a novel operator for effectively fusing layers across
scales and depth, and a novel stem block that further en-
hances the model’s capabilities.

An improved fusion layer. As shown in Fig. 1, the key is-
sue with multi-exit architectures is knowing which features
(across scales and depths) to combine at each level, and
how to combine them. Our model relies on a feature fusion
technique that incorporates both local and global context,
enabling the model to make well-informed predictions and
decisions. The integration of features through concatena-
tion and strided convolutions plays a central role in enhanc-
ing the model’s ability to learn complex patterns, leading to
significant improvements in its overall performance.

In our model, the output xs
l of layer l at the sth scale is

obtained using the concatenation operator denoted by [...].
The transformation hs

l (.) represents a regular convolution
operation, while h̃s

l (.) corresponds to a strided convolu-
tional operation. h̃1

1(.) correspond to the stem layer which
will be described in the next paragraph.

More specifically, the fusion is done according to the fol-
lowing equations:
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Although this mechanism may seem similar to MSD-
Net’s, it has one important difference: it makes greater use
of features computed at the previous scale level. While this
results in better performance, it has the potential disadvan-
tage of increasing the number of computations required to
process the features. For this reason, we have also intro-
duced a transition layer (which is equivalent to the original
version, except it disregards the previous scale in the con-
volution process) that is designed to effectively optimize
the reduction of spatial dimensions and channel numbers.
Instead of merging concatenated features and halving the
number of channels, we directly halve the number of chan-
nels within the current scale. This reduction is achieved
using a 1x1 convolution in our transition layer. The key ad-
vantage of this approach is that we strategically downsam-
ple features within the fine-scale branch. In this way, we
optimize feature processing and facilitate a seamless flow
of information within the current scale. The transition layer
ensures that the fine-scale features are properly prepared be-
fore being fed into the current scale.
An efficient stem layer. The stem layer plays a crucial role
in improving the efficiency of the architecture, as it is the
key element responsible for effectively extracting essential
features from the input data. Fig. 1 illustrates our proposed
stem layer, which consists of four successive convolutional
layers. It starts with a 3x3 standard convolutional layer to
capture initial patterns, followed by a 3x3 Depthwise Sepa-
rable Convolution layer to extract spatial information. The
3rd layer uses a 1x1 convolution to compress and refine
the features. To improve the model’s ability to capture im-
portant patterns and structures, the fourth layer uses a 3x3
Depthwise Separable Convolution (DW-Conv) with a step
size of 2 to downsample the feature maps, making it highly
suitable for our specific dataset. In addition, the stem in-
corporates a residual connection between the output of the



first convolutional layer and the output of the third convolu-
tional layer. This connection allows the model to retain and
propagate essential information, promoting effective feature
extraction and overall performance improvement.

In addition, the architectural design includes a dedicated
pair of convolutional layers, designed exclusively for the
classifier function, each with 128 output channels. The first
layer in this pair performs a 3 ⇥ 3 convolutional process,
smoothly incorporating a downsampling step of 2. This is
followed by a 1x1 convolution with a step value of 1. These
layers are then followed by the introduction of adaptive av-
erage pooling, a technique skilfully used to reshape the spa-
tial attributes into a streamlined 1x1 framework.

3. Experiments

We experimentally validate the effectiveness of our
method on two widely recognized image classification
datasets: CIFAR-10 and CIFAR-100, and compare our per-
formance with state-of-the-art architectures, namely MSD-
Net [12] and RANet [30]. To ensure a fair comparison, the
experimental settings adopted are consistent with those de-
scribed in the original MSDNet and RANet papers. We also
include two other competing models, namely ResNetMC

and DenseNetMC [13]. While we do not give ablative
comparisons due to space limitations, each of the two con-
tributions (the fusion layer and the stem layer) result in
performance gains of the same order of magnitude. The
stem serves the dual purpose of extracting initial valuable
features while efficiently reducing floating point operations
(FLOPs). In addition, the merging process plays a critical
role in significantly improving the overall classification per-
formance, making it a key component in this context. We
stress that in order to compare the performance of our model
with existing approaches, we used the implementation pro-
vided by their authors.
Datasets. The CIFAR-10 and CIFAR-100 datasets consist
of 32 × 32 natural RGB images and include 10 and 100
classes, respectively, with each dataset containing 50,000
training images and 10,000 test images. To ensure consis-
tency with previous studies [12], we specifically selected
5,000 images from the training set to form a validation set.
This validation set played a crucial role in our research, as
it allowed us to fine-tune and optimize the parameters of
our method, ultimately identifying the optimal confidence
threshold required for adaptive inference. By carefully val-
idating our approach, we were able to improve its perfor-
mance and generalization capabilities, thereby producing
more accurate and reliable results in real-world image clas-
sification scenarios.
Training and Data Augmentations. We train the proposed
models for 300 epochs using stochastic gradient descent
(SGD) with an initial learning rate of 0.1. After 20 epochs
of linear warm-up, the schedule transitions to cosine de-

cay. We use a batch size of 512, a momentum of 0.9, and a
weight decay of 1e4. For data augmentation, we follow the
approach described in [7], which involves randomly crop-
ping images to 32×32 pixels after zero padding (4 pixels on
each side). In addition, images are flipped horizontally with
a 50% probability, and RGB channels are normalized by
subtracting their respective channel mean and dividing by
their standard deviation. To further improve performance,
we integrate popular schemes such as Mixup [33], Cutmix
[32], and network regularization with label smoothing [24].
Experiments on Anytime prediction These experiments
highlight a model’s ability to make predictions with varying
degrees of accuracy and computational cost. In traditional
image classification tasks, a model processes an input im-
age and generates a single class prediction. In contrast, in
an anytime prediction scenario, the model predicts at dif-
ferent computational stages, with each prediction becoming
more accurate as additional computational resources are al-
located. The classification accuracies are shown in Figure 2.
The evaluation includes three classifiers: MSDNet, repre-
sented by a black line, RANet, represented by a yellow-
green line, and our method, shown in yellow. While MSD-
Net and RANet show similar performance, RANet performs
better when computational resources are limited. However,
our model performs significantly better on both the CIFAR-
10 and CIFAR-100 datasets. For CIFAR-10, our model
achieves an impressive 94.1% accuracy for the last classi-
fier, requiring 32% fewer FLOPs than RANet’s 93.8% last
classifier, and 15% fewer FLOPs than MSDNet’s 93.6% last
classifier. Moreover, when the computational budget ranges
from 0.25⇥108 FLOPs to 0.64⇥108 FLOPs, the accuracies
of the various classifiers in our method consistently exceed
those of MSDNet or RANet by 0.5% to 1%. In the case
of CIFAR-100, our model achieves a remarkable 76.3% ac-
curacy for the last classifier, using 32% fewer FLOPs than
RANet’s 74.28% last classifier, and 15% fewer FLOPs than
MSDNet’s 74.3% last classifier. Again, the accuracies of
the various classifiers in our method outperform those of
MSDNet or RANet by 1% to 2% when the computational
budget is in the range of 0.25 ⇥ 108 FLOPs to 0.64 ⇥ 108

FLOPs.
Budgeted Batch Classification Experiments. This ap-
proach efficiently processes image batches within a prede-
fined computational, memory, or time budget. It divides the
batch into smaller subsets and processes them sequentially
with different computational resources. Partial predictions
for each subset are aggregated to produce the final batch
predictions. This strategy enables reasonably accurate clas-
sifications with limited resources, making it valuable for ap-
plications on resource-constrained devices or systems. Fig-
ure 3 shows the results obtained with the budgeted batch
classification setting. To identify the optimal model for
each budget, we evaluate its accuracy on the test set and
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Figure 2: Accuracy (top-1) of anytime prediction models as a function of computational budget on CIFAR-10 (left) and
CIFAR-100 (right). Higher is better.
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Figure 3: Accuracy (top-1) of budgeted batch classification models as a function of average computational budget per image
on CIFAR-10 (left) and CIFAR-100 (right). Higher is better.

plot the corresponding curves for MSDNet, RANet, and our
model. For both CIFAR datasets, our model consistently
outperforms MSDNets, RANets, and other baseline models
for all budgets, except for RANet’s low flops performance,
which slightly outperforms ours. In particular, networks
with a multiscale dense connection architecture consistently
achieve significantly higher accuracy than other baseline
models with equivalent computational cost, underscoring
the strengths of our approach in the budgeted batch classifi-
cation setting. For computational budgets above 0.2 ⇥ 108

FLOPs on CIFAR-10, our proposed model requires 32%
fewer FLOPs to achieve a classification accuracy of 93.5%
compared to MSDNet and 15% fewer FLOPs than RANet.
Similarly, on CIFAR-100, our model achieves a classifi-
cation accuracy of 74.01% with only about 53% fewer
FLOPs than MSDNet and 34% fewer FLOPs than RANet.
While RANet and MSDNet perform similarly on CIFAR-
10 within the computational budget range of 0.15 ⇥ 108

to 0.5 ⇥ 108, our model outperforms them, requiring only
0.4 ⇥ 108 to reach 94%. On CIFAR-100, the classification
accuracies of our model consistently exceed those of MSD-
Net and RANet by 1% to 2% in the median and high budget
intervals (over 0.2 ⇥ 108 FLOPs). Furthermore, our model

achieves an accuracy of 94.1% when the budget exceeds
0.4 ⇥ 108 FLOPs, outperforming MSDNet and RANet by
0.5% and 0.3%, respectively, under the same computational
budget conditions. In addition, the experiments show that
our model is up to 5 times more efficient than ResNets on
both CIFAR-10 and CIFAR-100 datasets. This efficiency
further underscores the superiority of our proposed model
in the context of budgeted batch classification settings.

4. Conclusions

We have proposed a resource-efficient neural architec-
ture for image classification based on MSDNet. Prelimi-
nary results show that this multi-exit design excels in any-
time and budget batch classification, achieving state-of-the-
art performance on CIFAR10 and CIFAR100. Key contri-
butions include a novel feature fusion block and an efficient
stem block. Our approach, which seems promising for real-
world scenarios with limited resources, still needs to be val-
idated on more challenging and diverse tasks.
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