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ABSTRACT
This paper presents a light-weight and accurate deep neural model
for audiovisual emotion recognition. To design this model, the au-
thors followed a philosophy of simplicity, drastically limiting the
number of parameters to learn from the target datasets, always
choosing the simplest learning methods: i) transfer learning and
low-dimensional space embedding allows to reduce the dimension-
ality of the representations. ii) The visual temporal information is
handled by a simple score-per-frame selection process, averaged
across time. iii) A simple frame selection mechanism is also pro-
posed to weight the images of a sequence. iv) The fusion of the
different modalities is performed at prediction level (late fusion).
We also highlight the inherent challenges of the AFEW dataset
and the difficulty of model selection with as few as 383 validation
sequences. The proposed real-time emotion classifier achieved a
state-of-the-art accuracy of 60.64 % on the test set of AFEW, and
ranked 4th at the Emotion in the Wild 2018 challenge.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks;Neu-
ral networks; Computer vision representations;
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1 INTRODUCTION
Emotion recognition is a current topic of interest, finding many ap-
plications such as health care, customer analysis or even face anima-
tion. With the advance of deep learning for face analysis, automatic
emotion recognition might appear as an already solved problem.
Indeed, large image datasets for facial expression recognition in
uncontrolled conditions are emerging, allowing to learn accurate
deep models on this kind of task. For instance, EmotioNet [6] gath-
ers one million faces annotated in Action Units [13], AffectNet [25]
proposes half a million usable faces annotated in both discrete
emotion [27] and arousal valence [5], and Real-World Affective
Faces [23] is a dataset of around 30,000 faces with very reliable and
accurate annotations of the discrete and compound emotions.
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However, the algorithms proposed in the literature do not allow
yet to reach a human-level understanding of the emotions. It is the
reason why several multimodal and temporal datasets have been
proposed recently. The AVEC challenge [28] contains a dataset of
videos annotated with per-frame arousal valence and several fea-
tures. The FERA challenge [30] presents a corpus of different head
poses to allows action units detection in uncontrolled temporal con-
ditions. Finally AFEW [11, 12] is annotations in discrete emotions
of 773 training audiovisual clips extracted from movies. These clips
are therefore very noisy, due to the uncontrolled conditions.

Nevertheless these datasets contain a small amount of samples
and therefore raise three issues for machine learning approaches:
i) how to cope with the temporal aspect of emotions? ii) how to
combine the modalities? iii) how to learn a meaningful representa-
tion from so few samples? We investigate these issues by focusing
on the AFEW dataset annotated with discrete emotion. Several
methods have been exploring these questions during the past years.
The literature associated with the first challenge editions focuses
on hand-crafted features [20, 32] (e.g. Local Binary Patterns, Gabor
filters, Modulation Spectrum, Enhanced AutoCorrelation, Action
Units), which are then fed to classifiers such as SVM or Random
Forest. After 2015, visual learned features are becoming the domi-
nating approach, with the use of large deep convolutional neural
networks [15]. To handle the problem of the small size of these
datasets, recent approaches [15, 19, 22, 31] use transfer learning
from models learned on larger image datasets. To handle the tempo-
ral nature of the signal, several authors use LSTM recurrent neural
networks [15, 16, 19, 31] even if no strong improvements have
been obtained, compared to other simpler methods, as observed by
Knyazev et al. [22]. Other authors propose to use 3d convolutions
[15] and, possibly combined with LSTM [31]. The audio modality is
often described by hand-crafted features on top of which a classifier
is trained, even in recent approaches[19, 22, 31]. Pini et al. [26] also
propose to use a Soundnet [4] as a features extractor. Finally, to
combine the modalities, late fusion approaches are preferred and
performs better on this dataset [31].

We present in this paper a light-weight real-time neural network
model based on an "Occam’s razor" philosophy, consisting in always
choosing the simplest method at equal performance. The methods
section details the characteristics of this model, while results section



Valentin Vielzeuf, Corentin Kervadec, Stéphane Pateux, Alexis Lechervy, and Frédéric Jurie

reports its performance on several visual benchmarks and on the
EmotiW audiovisual challenge [1].

2 METHODS
This section presents the proposed framework for audiovisual emo-
tion recognition, by discussing first the visual and audio modalities,
and then by proposing a method for fusing them. We finally address
the issues raised by the (small) size of the dataset.
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Figure 1: Overview of our framework. Only the green part
(on the right side) is trained on AFEW.

2.1 Visual modality
The visual modality consists in sequences of images extracted from
the AFEW videos. They are processed by: i) applying a face detector
ii) aligning the landmarks with a landmark detector and an affine
transform, resizing aligned faces to 224×224. The so-obtained faces
are referred as the visual input in the rest of the paper.

Emotion classification with a ResNet-18 network. Our first ob-
jective is to learn a still image emotion classifier, based on the
ResNet-18 [18], which we considered to be well adapted to this task.
However, the small amount of training clips (773) makes it hard to
learn from scratch. Consequently, we first trained it on the larger
AffectNet dataset [25], containing in the order of 300,000 usable
faces, annotated with both emotion labels (8 labels, not the same as
AFEW) and arousal valence values. Multi-task learning allows us to
use these two types of annotations, by replacing the last dense layer
of the ResNet-18 network by two dense layers: one arousal-valence
linear regressor and one emotion classifier (softmax layer). Their
two losses are optimized during training, leading to a more general
512-sized hidden representation. We also use standard regulariza-
tion methods such as data augmentation (e.g. jittering, rotation) to
be robust to small alignment errors, cutout [9] and dropout[29].

MAX MAXMAX

s ss s s s

L faces

n selected faces

Figure 2: n faces are selected from a sequence of L frames. s
is the score of a given frame.

Applying directly this model to AFEW face images gives not
better than chance results, due to the big differences in the an-
notations of the 2 datasets. To deal with this issue, we use two
other emotion datasets: i) Real-World Affective Faces (RAF) [23],
containing 12,271 training images annotated with emotion labels,
with a large number of annotators for each sample and hence a
high confidence in the annotations. ii) SFEW [10], containing fewer
than 1,000 training images, but extracted from AFEW’s frames and
annotated with the same labels. The fine-tuning is done on these
two datasets, in two times. In a first time, only the parameters of
the last layer (regressor/classfier) are optimized. On a second time,
all the parameters of the network are fine-tuned, but with a lower
learning rate. The so-obtained classifier can be applied to the AFEW
faces, giving, for each frame, the arousal-valence prediction and
class label scores. We also output, for further use, the weights of
the hidden layer (512 weights), used as face features.

From still image to video classification. Once processed by the
above explained model, and assuming L denotes the number of
frames of a video, we obtain a set of L 512-dimensional face de-
scriptors with their associated scores (one score for each one of the
seven categories) as well as arousal/valence predictions.

One very simple way to aggregate the temporal information,
and produce classification scores at the level of the video, is to
average the per-frame scores. As shown in the experiment sections,
it already gives very good results (see Section 3.1). However, we
propose to explore better ways in the following.

We select n faces (n = 16 in the rest of the paper) from the
L original ones, combining down-sampling and max-pooling, as
shown in Figure 2. We first divide the sequence into n chunks of
equal length, and choose in each chunk the face with the highest
score (across frames and categories), represented by 512−d feature
vectors. For the rest, the per-frame scores are not used anymore.

At the end of this stage, we have a nx512 tensor representing
the faces of the video sequence. The final video clip classification is
obtained by temporal pooling of the n face features. We consider in
the experiment two alternatives: the first one consists in a simple
average of the face features, the second one consists in a weighted
average of these features. In both cases, once the features are aver-
aged, it gives a 512-d vector on which a linear classifier (softmax
with cross entropy) is applied. The n weights of the weighted aver-
age, one per selected frame, are regressed with a linear regressor
(with sigmoid activation) applied to the arousal-valence representa-
tion of the frames. The regressor is trained jointly with the whole
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network. The third fusion method consists in training a LSTM net-
work with 128 hidden units on the 512-d features of the n selected
frames. The output of the LSTM is the scores of the 7 classes.

Please note that for the sake of simplicity and because we ob-
served no improvement, we do not compute temporal features (such
as C3D features), contrarily to several recent approaches [15, 31].

2.2 Audio modality
Regarding the audio modality, we experimented two alternatives.

The first one consists in extracting 1582-d features designed for
emotion recognition, using the OpenSmile toolbox [14] trained on
the IEMOCAP dataset [8]. On top of these features, we apply a
random forest classifier [7].

The second one consists in extracting the same OpenSmile fea-
tures and train a fully connected classifier with 64 hidden units,
batch-normalization, dropout, and reLu activation. The so-obtained
model is then fine-tuned on the AFEW train set.

2.3 Fusion of the modalities
Image and audio give each one a set of scores (with one score per
class). As shown by previous works[31], sophisticated fusion meth-
ods often performs worse than simpler ones on AFEW, probably
because of their large number of parameters and the small size of
the dataset. We therefore experimented two simple approaches for
computing the final scores: (a) the mean of the modality scores;
(b) the weighted mean of the score, learned on the validation set,
similar to the last year’s winning approaches [15, 19].

2.4 Ensemble learning
Ensemble learning is often used to boost the results, as observed in
last competitionworks [3, 21, 24, 33, 34].We implement an ensemble
of our temporal model, by learning several times the same model
with different initializations, and averaging their predictions.

2.5 Dealing with the small size of AFEW
The proposed method has several hyper parameters or architectures
details (size of layers, etc.) that have to be set. The most common
way to set these parameters is to choose those giving the best per-
formance on the validation set. However, due to the small size of
the training and validation sets of AFEW, this is rather unreliable.
We experimented with 3 alternatives : (i) training several times the
model with different initialization and computing the mean perfor-
mance and the standard deviation (std); (ii) merging the training and
validation sets and applying cross-validation; (iii) using estimated
per-class accuracy and weight classes according to the test set dis-
tribution. The third alternative, as previously done by [22, 31], uses
the distributions given in Table 1. The accuracy on the weighted
validation set is then computed as follows: apond =

∑7
i=1 ai

ni
653 ,

where ai the estimated accuracy of the ith class on the validation
set, ni the number of elements of this class in the test set and 653
the number of samples of the test set.

3 RESULTS
This section experimentally validates the proposed model, by first
presenting the results obtained by our audio and visual models

An. Di. Fe. Ha. Sa. Ne. Su. All
Train 133 74 81 150 117 144 74 773
Val 64 40 46 63 61 63 46 383
Test 99 40 70 144 80 191 29 653

Table 1: AFEWdataset: number of video sequences per class.

Model RAF SFEW AFEW FLOP Param
CNN Ensemble [33] _ 55.96 _ >2000 >500
HoloNet [19] _ _ 46.5 75 _
Cov. Pooling [2] 85.4 58.14 46.71 1600 7.5
Transfer VGG [31] _ 45.2 41.4 1550 138
Our (image) 80 55.8 49.4 180 2

Table 2: Accuracy of different models for facial expression
classification. Weights and FLOPs are in millions. Transfer
VGG is a VGG-face model fine-tuned on FER-2013 [17].

taken individually, and, combined in a second time for the audiovi-
sual challenge. It is worth noting that our model uses a relatively
small number of parameters and can work in a real-time setting
(180M FLOPs). Our performance is measured by training several
models (in the order of 50 models) with different initialization and
measuring the mean accuracy and standard deviation (std).

3.1 Emotion Recognition in Images
We first compare our ResNet-18 model pre-trained on AffectNet,
without temporal aggregation of the features, to several state-of-
the-art methods, on emotion classification in images. As shown in
Table 2, despite its small number of parameters, our model gives
very good results, outperforming its competitors on the AFEW
validation set. In this case, temporal fusion is done by averaging
per frame predictions. Note that we measure a std around 0.5%.

3.2 Evaluation of the Temporal Pooling
We provide here the evaluation of the 3 different temporal pooling
methods we proposed in Section 2. Performance is measured as the
accuracy on the validation set of AFEW (mean and std). We also
indicate the weighted accuracy (see details in Section 2), which can
be seen as a more accurate estimation of the actual performance
on the test set. The standard deviation is, on average, around 0.6%.

Our main observations are: i) temporal features aggregation
is useful, ii) average and weighted average have approximately
the same performance and are better than our LSTM model. iii)
combining weighted and non-weighted average pooling seems to
help a little on the weighted validation set. iv) our best performance
outperforms any results published yet on this dataset. However,
with a std of 0.6%, we must be cautious about the conclusions.

We also note that the std on the weighted validation set is a bit
lower (resp. 0.5% and 0.4% for av. pool. and weighted av. pooling).
It can be explained by higher variations of performance inside the
"difficult" classes (disgust, surprise), which are rare in the test set.
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Model Accuracy Weig. Acc.

Vi
su
al

no feat. aggregation 49.4 55.6
av. pool. (1) 49.7 60.5
av. pool. (4) 50.4 61.2
av. pool. (50) 52.2 61.7
weig. av. pool (1) 50.2 61.1
weig. av. pool (4) 50.3 61.5
av. pool (2) + weig. av. pool (2) 50.1 62.0
LSTM 128 hidden units 49.5 58.2
VGG-LSTM [31] 48.6 _
FR-Net-B [22] 53.5 _

A
ud

io MLP 33.5 42.1
MLP (pre-trained) 35.0 45.2
Random Forest 38.8 44.3

Table 3: Accuracy for visual and audio modalities and for
state-of-the-art visual models (italic). Indication ’(x)’ means:
ensemble of x models with different initialization

.

3.3 Evaluation of the Audio Modality
As for the visual modality, we evaluate the 3 proposed methods.
The std is of 1.5% for the Multi Layer Perceptron trained from
scratch and of 0.8% for the Multi Layer Perceptron pre-trained on
IEMOCAP. Even if the Random Forest yields good results, it over-
fits the training set with the accuracy of almost 100% with hence a
high risk of bad generalizations. The pre-trained MLP achieves the
best and most stable results. The audio modality is weaker than the
visual one and the AFEW annotation of a video seems to rely more
on the visual modality and on the context. Nevertheless, audio can
bring a +3% accuracy gain when combined with visual modality, as
reported by Fan et al. [15], and is not an option for this challenge.

3.4 Audiovisual Challenge
This section describes our 7 submissions to the 2018 edition of the
EmotioW challenge. For each submission, we explain the audio and
the visual modalities in Table 4, as well as the performance.

First submission: most simple model with average pooling of
visual features and MLP for audio. Video and audio scores are
weighted resp. with 0.65 and 0.35 (weights learned on the valida-
tion set). Second submission: audio/video weights set to 0.5/0.5
and combination of RF and MLP. Third submission (our best one):
ensemble of 6 models (see Table 4 for details). Fourth submission:
same as the third submission, but replacing the Random Forest by
a second MLP. Fifth and sixth submissions: larger visual ensembles.
Seventh submission: same as third one using Train+Val for training
(surprisingly 0.1% lower).

These results confirmed our three intuitions. First, performance
on validation and test sets are very different, making it difficult to
choose a model from the validation set accuracy. Second, adding
the validation set to the train set for final training makes the per-
formance worse, which is counter-intuitive. Last but not least, dras-
tically limiting the number of trainable parameters on such a small
dataset is one of the key ingredients to better generalizations.

These experiments also highlights the importance of having a
weighting scheme to improve the selection of the model on the

# Visual Audio Weigh. Val Test
1 av. pool. (1) MLP (1) 62.1 57.2

2 av. pool. (1) RF (1)
+MLP (1) 62.4 58.6

3 av. pool. (2)
+ weig. av. pool.(2)

RF (1)
+MLP (1) 62.7 60.6

4 weig. av. pool. (2) MLP (2) 63.5 59.4

5 av. pool. (2)
+ weig. av. pool.(2) MLP (2) 63.0 60.4

6 av. pool. (50) MLP (2) 63.6 59.4
7 av. pool. (4) MLP (1) 72.4 60.5

Table 4: Our 7 seven submissions to the 2018 Emotion in the
Wild challenge. Indication ’(x)’ means: ensemble of x models
trained with different initialization. See text for details.

validation set, knowing that validation and test sets have different
distributions. More generally, we also observed large standard de-
viations in our cross-validation experiments, explaining why it’s
difficult to compare different methods on the validation set.

On overall, the proposed light model is real time and achieved
the accuracy of 60.64%, allowing it to ranked 4th at the 2018 edition
of the EmotiW Challenge.

We do believe that the performance on this challenge starts satu-
rating, which can be explained by the small size of the dataset and
the subjective (and therefore noisy) nature of the annotations. We
indeed noted that human performance reported on the validation
set of AFEW by [31] is comparable to the performance reached by
our model. There is consequently a risk that improving the perfor-
mance on this dataset will consist in exploiting its biases rather
than actually learning a better representation of emotions.

4 CONCLUSIONS
This paper proposes a new audiovisual model for emotion classi-
fication in videos. This model is carefully designed following the
"Occam’s razor" principle, which can be summed up by "always
choose the simplest approach". For both modalities we limited the
number of trainable parameters to their minimum. Transfer learn-
ing is also used to include reliable a priori knowledge and solve the
high-dimensional versus lack of data paradigm, especially for the
visual modality. A basic but well-performing temporal pooling is
also proposed, including a frame selection mechanism. Finally, a
simple fusion method average of the score limits again the number
of parameters of the model.
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