
Balancing Accuracy and Efficiency in
Budget-Aware Early-Exiting Neural Networks

Youva Addad[0009�0009�6994�6818], Alexis Lechervy[0000�0002�9441�0187], and
Frédéric Jurie[0000�0002�2686�0020]

GREYC, Normandy University, UNICAEN, ENSICAEN, UMR CNRS 6072, France
first_name.last_name@unicaen.fr

Abstract. This paper presents an Early Exit Neural Network (EENN)
architecture, which enables budgeted classification by dynamically se-
lecting the most relevant exit point for each input sample of a dataset
to achieve the best performance while adhering to a pre-defined com-
putational budget. The key contribution of this work is a novel method
that jointly learns the classifier model and the sample exiting policy, in
contrast to prior approaches that treated these components separately.
Specifically, the paper introduces a bi-level optimization framework that
simultaneously optimizes the cross-entropy loss of the classifier and the
probabilities of each sample exiting at different stages of the network.
This joint learning approach allows the classifier parameters and the
sample-dependent exiting policy to be mutually optimized, leading to
improved classification accuracy under computational constraints. The
proposed EENN method is evaluated on three computer vision bench-
marks - CIFAR-10, CIFAR-100, and ImageNet - and demonstrates state-
of-the-art results in budgeted classification compared to existing early
exit strategies. The code for this work will be made publicly available
upon acceptance of the paper.

Keywords: Computer Vision, Dynamic Neural Network, Weighting Sample,
Early Exit

1 Introduction

Recent image classification algorithms have achieved impressive results on bench-
marks such as the Large Scale Visual Recognition Challenge (LSVRC) [20].
However, this progress has come at the cost of increasingly large and computa-
tionally intensive models. In traditional deep learning architectures, each input
sample follows a fixed path through the entire network, regardless of its inherent
difficulty. This approach introduces unnecessary computational overhead, espe-
cially when dealing with datasets that contain a mix of easy and challenging
samples. This limitation makes real-time inference on resource-constrained plat-
forms, such as smartphones, wearable devices, robotics, and other edge devices,
almost unattainable.

2 Y. Addad et al.

To address this issue, researchers have explored various approaches to im-
prove the inference efficiency of deep convolutional neural networks (CNNs).
These include efficient architecture design [7, 36, 14], network pruning [11, 34],
weight quantization [18, 17], knowledge distillation [13, 21], adaptive inference
[15, 10, 33, 32, 25], and efficient deployment on hardware [30, 5].

Dynamic early-exiting networks, a type of adaptive inference, address the
inefficiencies of traditional deep learning architectures by introducing branch
points at different depths within the network [29]. The key idea is to intelligently
select network segments to execute based on the input sample: easy-to-classify
inputs can exit the network earlier, reducing computation, while complex inputs
pass through deeper layers. This adaptive decision-making allows dynamic early-
exiting networks to balance computational efficiency and predictive accuracy.
By selectively executing only necessary segments, these models can significantly
reduce computational cost while maintaining overall performance.

Furthermore, dynamic early-exiting networks can tailor the inference process
to available resources and latency requirements. In time-constrained scenarios,
the model can prioritize early exits for faster predictions; in resource-rich set-
tings, it can explore deeper branches to improve accuracy. This flexibility makes
dynamic early-exiting networks compelling for deployment across devices, from
resource-constrained edge to powerful server systems. By intelligently allocating
resources based on input, these networks can deliver efficient, high-performing
inference for diverse real-world applications.

The importance of dynamic early-exiting networks has driven substantial re-
search into improving their mechanisms. Key advancements in this active area
include maximizing reuse of computations between classifiers [15], leveraging
self-distillation techniques to efficiently transfer knowledge between network ex-
its [23, 25, 9], and processing of successive small input regions to enable more dy-
namic exiting decisions [32]. Researchers have also explored resolution-adaptive
network architectures [33, 37] and developed calibration and sample weighting
methods to improve the early exit decisions [10, 26]. Furthermore, the field has
seen exploration of transformer-based models as an alternative to convolutional
networks for dynamic early-exiting [31, 4, 9]. This steady stream of innovations
has led to ever-increasing sophistication in dynamic early-exiting network mech-
anisms, further enhancing their efficiency and effectiveness.

The fundamental challenge in this domain stems from the inherent train-test
mismatch [8]. The classification network is typically trained without considering
the constraints of a limited inference budget. Each exit classifier is optimized
across the entire training dataset, without accounting for the fact that during
inference, not all classifiers may encounter all types of testing data. In scenarios
with resource limitations or easily manageable inputs, only the shallow layers and
classifiers are activated, leading to a disparity in the data distribution between
training and testing. While "easy" examples may contribute to regularizing deep
classifiers during training, overemphasizing these samples can exacerbate the
distribution mismatch issue.

Title Suppressed Due to Excessive Length 3

In this work, we assume that the inference budget will be allocated by spec-
ifying the ratio of samples that must exit at each checkpoint. This means the
classifiers must not only infer the correct classes but also rank the samples ap-
propriately to meet the specified exit criteria within the given overall budget.
This requirement calls for a specialized training procedure, which we address by
introducing a novel gater network that is independent of both the backbone and
the classifiers. The gater network takes various confidence measures as input and
generates probabilities for selecting the best exit. These probabilities are then
transformed into sample weights. Since the predictor network and gater network
operate independently, we propose a bi-level optimization approach to co-train
them.

The contributions outlined in this paper can be summarized as follows:

• We propose a novel gater network that takes multiple confidence measures as
input and produces probabilities for selecting the optimal exit point during
training.

• We introduce an alternative approach to modeling the likelihood of early
exiting, which plays a crucial role in achieving the desired balance between
accuracy and computational efficiency.

• We formulate the training process as a bi-level optimization problem, en-
abling the simultaneous training of the predictor network and the gater net-
work. This optimization scheme evaluates both the accuracy and the infer-
ence cost during the training phase.

• We conduct extensive experiments on three widely-used datasets: CIFAR-10,
CIFAR-100, and ImageNet. These comprehensive evaluations demonstrate
the effectiveness of our proposed approach in delivering efficient and high-
performing dynamic early-exiting inference.

2 Related Work

Dynamic Early Exiting is an emerging technique in deep learning that focuses
on improving inference efficiency [15, 25, 33, 32, 10, 9]. It allows models to exit
prediction early for certain input instances, reducing unnecessary computation
without significant loss of accuracy. Dynamic Early Exiting uses adaptive cri-
teria, such as confidence thresholds [29] or uncertainty measures [26], to decide
whether to exit the inference process early for an input. This approach has sev-
eral advantages, including reduced inference time [15], improved scalability [8]
for resource-constrained environments [22], and potential energy savings [22].
While dynamic early exit has attracted attention for its benefits, challenges re-
main in finding the right criteria to balance computational gains and accuracy
preservation. However, recent research [9, 10, 31, 15] has shown promising results
and has been applied to several domains, including computer vision [3], nat-
ural language processing [12] and speech recognition [27]. Some authors have
attempted to deviate from the multi-exit framework, for example in [35], where
the authors proposed a boosting-like neural architecture, but the performance is
comparable to multi-exit approaches such as MSDNet [15].

4 Y. Addad et al.

The best performing approaches in multi-exit architectures are based on
BranchyNet [29], which was one of the first papers to propose such an efficient
architecture, improved later by MSDNet [15], which introduced the concepts
of anytime classification and budgeted batch classification with multiple classi-
fiers applied adaptively during test time. Building on the foundations of this
architecture, [1] has proposed a more appropriate way of fusing the network’s
intermediary outputs. In [33], the Resolution Adaptive Network (RANet) intro-
duced the idea of performing resolution adaptive learning in deep CNNs within
this multi-exit framework. In contrast, in L2W [10] the authors observed that
MSDNet treats all samples for all exists during training, ignoring the early-exit
behaviour that occurs during testing, and proposed to compensate for this by
weighting training samples according to their difficulty. In the very recent paper
[26], the authors proposed a novel method for estimating uncertainty in dynamic
neural networks, which allows to better distinguish between easy and hard ex-
amples. This question was also investigated in [2]. It is also worth mentioning
the approach presented in [24], which proposes an online knowledge distillation
mechanism for multi-exit networks. Another approach using attention is the
Dynamic Vision Transformer (DVT) [31] and the Coarse-to-Fine Vision Trans-
former (CF-ViT) [4]. Both methods share a common principle, emphasising that
it is suboptimal to process all samples with the same number of tokens. The
most recent model, Dynamic Perceiver (Dyn-Perceiver) [9], advocates disentan-
gling the feature extractor and classifier branches due to the problem of classifier
interference.

One limitation of these existing methods is that they do not specifically
optimize the backbone network for budgeted inference. In contrast, our approach
directly addresses this by jointly training the backbone and gating mechanisms
to make efficient early-exiting decisions under resource constraints.

3 Presentation of the Contributions

As mentioned earlier, the key idea of our approach is to jointly train the classi-
fication network and the early exits. However, this presents a challenge, as the
two components are interdependent: the performance of the early exits depends
on the parameters of the classification network, and vice versa. This mutual de-
pendence complicates the optimization process, as the optimal solution for one
component cannot be determined independently of the other. Fig. (1) provides
an illustration of the overall training procedure.

Early Exiting at Inference Time. Once the multi-exit neural network is
trained, early exit is performed during inference by defining thresholds ⌘(k),
where k refers to the k-th exit. When processing input examples xi, the exam-
ples are sequentially passed through each classifier exit fk until the maximum
predicted class probability, denoted as maxc softmax

�
fk(xi)

�
, exceeds the cor-

responding threshold ⌘(k). At this point, the network returns the predicted class
c.

Title Suppressed Due to Excessive Length 5

Exit KExit 2Exit 1

MLP

Backbone Network

Loss

Exit K

Cost

gradient
on

gradient
on
Probability
of choosing

K

Classifier

forward
pass

Fig. 1: Our Training Method: An Overview. The yellow arrow in the architecture
represents the gradient utilized to update the entire backbone and exits. On the
other hand, the red arrow signifies the gradient employed for updating the MLP
scorer. The values of AK are determined using the formula provided in Eq. (5).
It’s worth noting that the cost can be viewed as a scalar regularization term.

The threshold values ⌘(k) are usually determined using validation data, with
the goal of ensuring that the overall processing remains within the specified
computation budget. The typical approach, which we also employ in this work, is
to set the thresholds such that a fixed fraction q, with 0 < q 1, of the samples
reaching a classifier will obtain a confident enough classification to exit. This
fixed probability q is applied consistently across all exits. Effectively, setting q is
equivalent to defining the desired computation budget, as it directly determines
the expected number of samples that will exit at each stage of the network. The
key point is that the classification network should be trained to provide higher
classification scores for the examples that should be the first to exit.

Training Multi-Exit Networks. We have established that the classification
scores provided by the network should be higher for examples that are intended
to exit the network earlier. This can be the case for examples that are easier to
classify or examples where further propagation through the network would not
yield significant performance gains given the computational budget. This means
the classification network needs to be trained with the understanding that some
examples will be prioritized for earlier exit.

Let D be a set of training samples (xi, yi) for i ranging from 1 to N , where xi

denotes the input features (e.g., images) and yi 2 C represents the correspond-
ing class labels. The set C = {1, 2, . . . , C} encompasses all potential classes. The
objective is to train the Multi-Exit Neural Network (MENN) model f parame-
terized by ✓.

Let k 2 [0,K] be the index of each exit, where fk (parameterized by ✓k) rep-
resents a sub-network responsible for generating the k-th output and aiming to
predict the target using different computational resources. In practice, fk often
shares layers with lower-cost networks, allowing for partial reuse of computations.

6 Y. Addad et al.

This design choice enables the network to efficiently allocate computational re-
sources based on the requirements of each input sample.

The objective stated above translates into the loss:

L(✓;D) = Ex⇠Pr(x)

⇥
Ek⇠Pr(k|x)

�
`CE(ŷk, y)

�⇤
, (1)

where ŷk is the label predicted by fk, LCE(✓;D) = Ex⇠Pr(x)

⇥
`CE(ŷk, y)

⇤
is the

standard cross-entropy loss where `CE(ŷk, y) = � log Prŷ=y(x; ✓), and Pr(k|x)
represents the probability for the input x to exit at the k-th exit.

Traditionally, Early Exit Neural Network (EENN) methods have assumed a
fixed probability of exiting at each layer, i.e., Pr(k|x) = 1

K . This simplifies the
loss function to the average of the cross-entropies at each output. We relax this
assumption of a fixed exit probability. Instead, we consider a sample-dependent
probability of exiting, Pr(k|x), which can vary across samples. This sample-
dependent exit probability is important because it allows the network to adapt
its computational budget more flexibly to each input, while still maintaining the
overall budget constraint, at train time.

Addressing Early Exit during Training. As mentioned in the previous
section, we want the classification network to be learned by taking into account
the fact that not all samples have an equal probability of exiting at each exit
and must respect a given budget. Leveraging the work in [16], we integrate the
probability of exiting in the loss, which also leads to the introduction of a per-
exit cost function, as the early exiting probabilities depend on the overall budget.
We propose to translate this into the following loss:

L(✓;D) = Ex⇠Pr(x)

�
Ek⇠Pr(k|x)

�
`CE(ŷk, y) + �Costk

��
. (2)

where � is a hyperparameter that determines the weight given to additional
costs associated with the model’s predictions. It controls the emphasis placed
on these costs compared to the cross-entropy loss. We will show later how to
compute Pr(k|x), which is not a constant here.

Regularizing the loss. We observed that using the loss given in Eq. 2, the
model frequently favors a single output based on cost considerations. This ten-
dency limits the model’s capacity to generalize effectively due to the lack of di-
versity in output selection. To address this limitation, we introduce an additional
term in the loss function, which is the unweighted cross-entropy, as follows:

L(✓;D) = Ex⇠Pr(x)

�
Ek⇠Pr(k|x)

�
`CE(ŷk, y) + �Costk

�
+KEk⇠Uniform(K)

�
`CE(ŷk, y)

� �
.

(3)
Given that Costk is a scalar value independent of the training parameters,

the loss can be written as:

L =
1

N

NX

i=1

KX

k=1

(Pr(k|x) + 1)
�
`CE(ŷki , yi) + �Costk

�
. (4)

Title Suppressed Due to Excessive Length 7

Computing the probability of early stopping. As discussed before, once
the network achieves sufficient confidence, it may no longer require further con-
sideration of subsequent exits. This rationale underlies our modeling of Pr(k|xi),
which is the likelihood for the sample xi of exiting at exit k:

Pr(k|xi) =

8
><

>:

P k
i if k = 1

P k
i

Qk�1
j=1 (1� P j

i) if 1 < k < K
QK�1

j=1 (1� P j
i) if k = K

. (5)

where P k
i is the probability that p(k)i is greater than the exit threshold.

Eq. (5) defines this probability differently for three cases: the first exit (k =
1), the last exit (k = K), and all other exits in between. The probability of
an input exiting at the first exit, denoted as Pr(k = 1|x), is equivalent to the
probability of the input being correctly confident at that exit. Conversely, for
the final output, the input will only exit if it has not exit at any of the preceding
output. This scenario is captured by multiplying the probabilities of not exiting
at each of the previous outupt. For all intermediate exits, the input will exit if
two conditions are met: first, it must be correctly confident at the current exit,
and second, it must not have been correctly confident at any of the preceding
outputs. This situation is represented by the product of the probability of correct
confident at the current exit and the probabilities of not exiting at each of
the previous exits. In summary, this equation serves as a probabilistic decision-
making framework, determining the optimal exit point for an input. It strikes a
balance between the goal of achieving a correct confident and the objective of
minimising the computational expense associated with processing the input.

Note that it can be readily confirmed that the summation
PK

k=1 Pr(k|x) = 1.

Estimating the probability of early stopping at train time. Since we
cannot know the values of the thresholds ⌘(k) during training, it is not possible
to calculate the probabilities P k

i directly. We propose to replace this term by an
action function Ak

i , which selects the outputs according to the multiple confi-
dence scores ski;✓ and the backbone parameters represented by ✓. This function,
parameterised by �, dictates the response of the model to the multiple confi-
dence scores. This is achieved by employing a Multi-Layer Perceptron (MLP) on
an aggregated confidence score, represented as ski;✓. Therefore, the probability

P k
i;� = �

⇣
MLP(ski;✓)

⌘
, given the aggregated confidence score. � is the sigmoid

function.
The aggregation ski;✓, serves as a comprehensive measure of the model’s cer-

tainty across various aspects, thereby providing a more robust estimate of the
probability P k

i . This approach allows for a more nuanced understanding of the
model’s performance, as it takes into account a variety of confidence scores,
rather than relying on a single one. To accomplish this, we established an aggre-
gation of confidence measures, which encompasses maximum confidence, max-
imum merging, and entropy. The formulation of these concepts is as follows

8 Y. Addad et al.

(inspired by the work of Ilhan et. al. [16]):

sl,max
i;✓ = p(k)i , (6)

sl,entropyi;✓ =
CX

c0=0

softmaxc0
�
fk(xi)

�
log(softmaxc0

�
fk(xi)

�
), (7)

sl,margin
i;✓ = p(k)i �max

c06=c
softmaxc0

�
fk(xi)

�
. (8)

In our practical implementation, we utilize Equation (9) to regulate the
smoothness of probability distributions within our model. This equation embod-
ies the softmax operation with a modification introduced by the temperature
parameter (T). Integrating T into the equation provides us with precise con-
trol over how probabilities are distributed among the exits, leveraging the input
data xi. The normalization step within the equation guarantees that the result-
ing probabilities sum up to 1, ensuring a valid probability distribution. In our
experimental setup, we set the temperature parameter to T = 0.5. We find this
temperature value works well through a grid search.

Ak
i;� =

Pr(k|xi)1/TPK
j=1 Pr(j|xi)1/T

(9)

Optimizing � and ✓.

The training of the multi-exit network involves optimizing two sets of param-
eters: ✓, which are the parameters of the classification networks, and �, which
are the parameters of the action function that estimates the probability for a
sample to exit at a particular exit of the network. This constitutes a bi-level op-
timization problem, where we have two interconnected optimization problems,
with one nested within the other.

In this bi-level optimization setup, the solution to the outer problem depends
on the resolution of the inner problem. The process of minimizing the bi-level
optimization can be described as follows:

min
�

1

N

NX

i=1

KX

k=1

⇣
`CE
✓⇤ (ŷki , yi) + �Costk

⌘
(Ak

i;�(s
k
i;✓⇤))

s.t.min
✓

1

N

NX

i=1

KX

k=1

⇣
`CE
✓ (ŷki , yi) + �Costk

⌘
(Ak

i;�(s
k
i;✓) + 1)

(10)

Our approach to bi-level optimization differs from that of [10], as we optimize
the same loss function in both the inner and outer optimization stages, with
only the parameters varying. Now, directing attention to the derivatives of the
objectives concerning the parameters ✓, and �, the derivatives are as follows:

Title Suppressed Due to Excessive Length 9

@Linner

@✓
=

NX

i=1

KX

k=1

�
Ak

i;�(s
k
i;✓) + 1

� @`CE
✓ (ŷki , yi)

@✓

+
�
`CE
✓ (ŷki , yi)) + �Costk

� @Ak
i;�(s

k
i;✓)

@✓
, (11)

@Louter

@�
=

NX

i=1

KX

k=1

(`CE
✓⇤ (ŷki , yi) + �Costk)

@Ak
i;�(s

k
i;✓⇤)

@�
. (12)

4 Experiments

This section presents the experimental validation of the proposed method on
CIFAR-10/100 [19] and ImageNet [6] datasets, and provides comparisons with
recent methods in the literature. Inline with the literature on the domain, we
experiment our approach in the budgeted batch classification mode as well as in
the anytime classification mode (see definitions in [15]).

On the influence of � The classification network is trained using a cost func-
tion that manages a trade-off between budget and classification performance.
Ideally, we would need to train a different network for each value of �, i.e., for
each level of budget allocated, which would require training and storing numer-
ous networks to cover all the possible trade-offs. However, we have observed that
it is possible to find a single value of � that offers an acceptable compromise,
regardless of the budget allocated for inference. This value, � = 2, was estimated
empirically through a performance analysis on the CIFAR-100 database. All the
following experiments have been conducted using a single classification network
learned with � = 2.

On the importance of training the classification network with budget-

aware constraints The main idea of this paper is that it is important to train
the classification network while considering budget constraints, as opposed to
methods that first train the classifier and then add techniques to refine the output
rules. To validate this hypothesis, we conducted an experiment on the CIFAR
databases, the results of which are part of Figure 3. This figure compares the
performance of our proposed method (called "MSDNet+Ours") with the same
method when the classification network is first learned and then frozen (called
"MSDNet frozen+Ours"). We observe that the gain is significant, on the order
of +2% on CIFAR 100, across various budget levels.

On the features used for estimating the probability of early stopping at

train time As discussed in the previous section, during training we cannot know
which example will output on which layer during inference. Instead, we infer

10 Y. Addad et al.

Input Top-1 Acc (%).
30M 50M 70M 90M

Confidence Only 70.84 76.39 79.32 80.08
Margin Only 71.49 76.07 78.73 79.6
Entropy Only 71.55 76.84 79.43 80.37

Confidence and Margin 71.63 76.48 78.91 79.73
Confidence and Entropy 72.28 76.81 79.53 80.41

Margin and Entropy 71.67 76.56 78.79 79.7
All 71.57 76.89 79.19 79.7

Table 1: Accuracy on CIFAR-100 in budgeted batch classification, comparing
different combinations of features used to determine the probability of exiting
the network: ’confidence’, ’margin’, and ’entropy’ (as described in Section 3).

0 2 4 6 8 10 12 14

86

89

92

95

budget (in MUL-ADD)⇥107

ac
cu

ra
cy

(%
)

Anytime prediction on CIFAR-10

MSDNet + Ours

MSDNet

RANet

BoostNet

L2W+MSDnet

JEI-DNN

0 2 4 6 8 10 12 14

50

55

60

65

70

75

80

budget (in MUL-ADD)⇥107

ac
cu

ra
cy

(%
)

Anytime prediction on CIFAR-100

MSDNet+Ours

MSDNet

RANet

BoostNet

L2W+MSDnet

JEI-DNN

Fig. 2: Accuracy (top-1) of anytime prediction models as a function of computa-
tional budget on CIFAR-10 (top) and CIFAR-100 (bottom) . Higher is better.

this information from certain features that we believe correlate with the early
stopping probability, namely: ’confidence’, ’margin’, and ’entropy’ (as described
in Section 3). Table 1 shows the performance of the classifier for different budgets
as a function of the information used to infer the probability of exiting. The best
model across all budgets is obtained by using both the ’confidence’ score and
’entropy’ as inputs. In general, incorporating entropy into the input results in
the highest score compared to using other features alone. This is the setting used
in the following experiments.

Comparisons with state-of-the-art multi-exit achitectures We compare
our model to the best performing related works, namely MSDNet [15], RANet
[33], BoostNet [35], L2W [10], and JEI-DNN [28]. In addition, we compare our
results with those of post-hoc methods, specifically Calibrated-DNN proposed
by Meronen et al. [26] and EENet proposed by Ilhan et al. [16].

Title Suppressed Due to Excessive Length 11

1 3 5 7 9 11
91

92

93

94

95

96

budget (in MUL-ADD)⇥107

ac
cu

ra
cy

(%
)

Budgeted batch classification on CIFAR-10

MSDNet + Ours

MSDNet

RANet

BoostNet

L2W+MSDNet

JEI-DNN

MSDNet frozen + Our

1 3 5 7 9 11
66

68

70

72

74

76

78

80

budget (in MUL-ADD)⇥107

ac
cu

ra
cy

(%
)

Budgeted batch classification on CIFAR-100

MSDNet + Ours

MSDNet

RANet

BoostNet

L2W+MSDNet

JEI-DNN

MSDNet frozen + Our

Fig. 3: Accuracy (top-1) of budgeted batch classification models as a function
of average computational budget per image on CIFAR-10 (left) and CIFAR-100
(right).

For Anytime Prediction, our proposed training method coupled with MSD-
Net [15] surpasses the previous state-of-the-art for both CIFAR-10 and CIFAR-
100 datasets, even for the first exits. The only exception is exit 3 on CIFAR-10,
where RANet performs slightly better. Our method is depicted by the black
curve in Fig. 2 entitled ’MDSNet+Ours’. On CIFAR-10, our method achieves
an accuracy of 96.13% for its last exit with 137M FLOPs. For a budget of
27M FLOPs, we achieve an accuracy of 90.80% compared to RANet’s 90.96%
with a similar number of FLOPs. In comparison to JEI-DNN [28] trained under
the same conditions, we achieve an improvement of approximately 2% to 3%
in accuracy across all exits. On CIFAR-100, our method attains an accuracy of
80.43% with 137M FLOPs. Compared to the traditional training of MSDNet,
our proposed method achieves an improvement of approximately 1% to 1.5% in
accuracy, depending on the exit.

In the context of budgeted batch classification, our proposed method demon-
strates superior performance compared to all other methods for both CIFAR-10
and CIFAR-100 datasets. For CIFAR-10, our method achieves a classification
rate of 95.03% with a budget of only 25M FLOPs, which is significantly more
efficient than MSDNet, requiring twice as many FLOPs to achieve the same level
of performance. Furthermore, RANet and BoostNet require approximately 75M
FLOPs to attain the same performance level as our method. To reach the same
accuracy as JEI-DNN, which is approximately 93.4%, our method requires only
28M FLOPs, which is about 3⇥ fewer FLOPs. For CIFAR-100, our method re-
quires only 90M FLOPs to attain an accuracy of 80.43%, and only 58M FLOPs
to achieve the same level of performance as MSDNet, which takes approximately
1.5⇥ more FLOPs.

In addition to comparing our method with other approaches, we have also
evaluated it against post-hoc methods, which involve applying post calibration

12 Y. Addad et al.

2 4 6 8 10
64

66

68

70

72

74

76

78

80

budget (in MUL-ADD)⇥107

ac
cu

ra
cy

(%
)

Budgeted batch classification on CIFAR-100 for MSDNet

MSDNet + Ours

MSDNet

Calibrated-DNN + MSDNet

EENet + MSDNet

2 4 6 8 10
66

68

70

72

74

76

78

budget (in MUL-ADD)⇥107

ac
cu

ra
cy

(%
)

Budgeted batch classification on CIFAR-100 for RANet

RANet + Ours

RANet

Calibrated-DNN + RANet

EENet + RANet

Fig. 4: Compare MSDNet and RANet using both the post-hoc method and our
training approach on CIFAR 100 dataset. Higher is better.

on the scores. Fig. 4 illustrates the comparison with two such methods, namely
Calibrated-DNN [26] and EENet [16]. The figure presents two models, with
MSDNet [15] on the left and RANet [33] on the right. Our proposed method
demonstrates significant improvement in the performance of both architectures
and surpasses the current state-of-the-art methods in both cases. In the scenario
of MSDNet [15], Calibrated-DNN noticeably improves inference performance,
particularly in budgets exceeding 60M Flops, although still falling short of our
method’s enhancement. When MSDNet [15] is combined with EENet [16], the
resulting method exhibits inferior performance compared to the classic approach.
As for RANet [33], our approach enhances its performance by a margin of 0.5%
to 1.5% across all budgets. Notably, Calibrated-DNN achieves nearly equivalent
performance to traditional training. Similarly, applying EENet [16] to RANet
[33] yields poor result as classical training.

Finally, Fig. 5 reports the performance of the proposed method on the Im-
ageNet dataset. Once again, our proposed method demonstrates superior per-
formance compared to other state-of-the-art approaches, whether for Anytime
Prediction or Budgeted Batch Classification. In Anytime Prediction, our method
outperforms L2W-MSDNet and BoostNet, two approaches that bear the closest
resemblance to ours. In the realm of Budgeted Batch Classification, our primary
focus, our approach achieves a slightly higher accuracy of around 0.5% to 1%
compared to alternative methods. Noteworthy is our method’s efficiency, requir-
ing only 1.95⇥109 Flops to achieve peak accuracy, representing a 25% reduction
in Flops compared to L2W-MSDNet. Regarding BoostNet, our method achieves
the maximum performance reached by BoostNet, approximately 78.54%, with
only 1.87⇥ 109 Flops, marking a reduction of approximately 30% in Flops.

Title Suppressed Due to Excessive Length 13

0 1 2 3 4
60

65

70

75

80

budget (in MUL-ADD)⇥109

ac
cu

ra
cy

(%
)

Anytime prediction on ImageNet

MSDNet + Our

MSDNet

RANet

L2W-MSDNet

BoostNet

0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3
68

70

72

74

76

78

80

budget (in MUL-ADD)⇥109

ac
cu

ra
cy

(%
)

Budgeted batch classification on ImageNet

MSDNet + Our

MSDNet

RANet

L2W-MSDNet

BoostNet

EENet + MSDNet

Calibrated-DNN + MSDNet

Fig. 5: Top-1 accuracy on ImageNet, plotted as a function of computational
budget.

5 Conclusions

This paper introduces a training approach for Early Exit Neural Networks
(EENN) specifically designed for budgeted classification tasks. The primary goal
of our method is to align the behavior of the training and inference steps. By
enhancing traditional Early Exit models with the integration of the forward cost
and a network that calibrates sample difficulty, we achieve improved classifi-
cation accuracy while respecting computational constraints. Extensive evalua-
tions on CIFAR-10, CIFAR-100, and ImageNet benchmarks demonstrate that
our approach sets a new state-of-the-art for budgeted classification, consistently
outperforming existing early exit strategies.

Acknowledgments. Research reported in this paper was supported by the
ANR under award number ANR-19-CHIA-0017 and was performed using com-
puting resources of CRIANN.

References

1. Addad, Y., Lechervy, A., Jurie, F.: Multi-exit resource-efficient neural architecture
for image classification with optimized fusion block. In: ICCV Workshops (2023)

2. Agarwal, C., D’souza, D., Hooker, S.: Estimating Example Difficulty using Variance
of Gradients. In: CVPR (2022)

3. Bi, Y., Xue, B., Mesejo, P., Cagnoni, S., Zhang, M.: A Survey on Evolutionary
Computation for Computer Vision and Image Analysis: Past, Present, and Future
Trends. IEEE Transactions on Evolutionary Computation 27(1) (2023)

4. Chen, M., Lin, M., Li, K., Shen, Y., Wu, Y., Chao, F., Ji, R.: Cf-vit: A general
coarse-to-fine method for vision transformer. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. vol. 37 (2022)

14 Y. Addad et al.

5. Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E.Q., Wang, L., Hu, Y., Ceze,
L., Guestrin, C., Krishnamurthy, A.: Tvm: end-to-end optimization stack for deep
learning. arXiv preprint arXiv:1802.04799 (2018)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

7. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features
from cheap operations. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2020)

8. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis & Machine Intelligence
44(11), 7436–7456 (nov 2022). https://doi.org/10.1109/TPAMI.2021.3117837

9. Han, Y., Han, D., Liu, Z., Wang, Y., Pan, X., Pu, Y., Deng, C., Feng, J., Song, S.,
Huang, G.: Dynamic perceiver for efficient visual recognition (Jun 2023)

10. Han, Y., Pu, Y., Lai, Z., Wang, C., Song, S., Cao, J., Huang, W., Deng, C., Huang,
G.: Learning to weight samples for dynamic early-exiting networks. In: Computer
Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XI. pp. 362–378. Springer-Verlag (11 2022)

11. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

12. Hedderich, M.A., Lange, L., Adel, H., Strötgen, J., Klakow, D.: A survey on recent
approaches for natural language processing in low-resource scenarios. In: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. pp. 2545–2568. Asso-
ciation for Computational Linguistics, Online (Jun 2021)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

14. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications (Apr 2017), arXiv:1704.04861 [cs]

15. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-
scale dense networks for resource efficient image classification. In: International
Conference on Learning Representations (2018)

16. Ilhan, F., Chow, K.H., Hu, S., Huang, T., Tekin, S., Wei, W., Wu, Y., Lee, M.,
Kompella, R., Latapie, H., Liu, G., Liu, L.: Adaptive deep neural network inference
optimization with eenet. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). pp. 1373–1382 (January 2024)

17. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2018)

18. Jung, S., Son, C., Lee, S., Son, J., Han, J.J., Kwak, Y., Hwang, S.J., Choi, C.:
Learning to quantize deep networks by optimizing quantization intervals with task
loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (June 2019)

19. Krizhevsky, A.: Learning multiple layers of features from tiny images pp. 32–33
(2009)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K.
(eds.) Advances in Neural Information Processing Systems. vol. 25 (2012)

Title Suppressed Due to Excessive Length 15

21. lan, x., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble. In:
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran
Associates, Inc. (2018)

22. Laskaridis, S., Kouris, A., Lane, N.D.: Adaptive inference through early-exit net-
works: Design, challenges and directions. In: Proceedings of the 5th International
Workshop on Embedded and Mobile Deep Learning (2021)

23. Lee, H., Lee, J.S.: Students are the Best Teacher: Exit-Ensemble Distillation with
Multi-Exits (Apr 2021). https://doi.org/10.48550/arXiv.2104.00299

24. Lee, H., Lee, J.S.: Rethinking Online Knowledge Distillation with Multi-exits. In:
Wang, L., Gall, J., Chin, T.J., Sato, I., Chellappa, R. (eds.) Computer Vision –
ACCV 2022, vol. 13846, pp. 408–424. Springer Nature Switzerland (2023)

25. Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training
adaptive deep networks. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV) (October 2019)

26. Meronen, L., Trapp, M., Pilzer, A., Yang, L., Solin, A.: Fixing Overconfidence in
Dynamic Neural Networks (Apr 2023), arXiv:2302.06359 [cs]

27. Prabhavalkar, R., Hori, T., Sainath, T.N., Schlüter, R., Watanabe, S.: End-to-End
Speech Recognition: A Survey (Mar 2023), arXiv:2303.03329 [cs, eess]

28. Regol, F., Chataoui, J., Coates, M.: Jointly-learned exit and inference for a dynamic
neural network. In: The Twelfth International Conference on Learning Represen-
tations (ICLR) (2024)

29. Teerapittayanon, S., McDanel, B., Kung, H.T.: Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd International Conference on Pattern
Recognition (ICPR) pp. 2464–2469 (2016)

30. Thakkar, M., Thakkar, M.: Introduction to core ml framework. Beginning Machine
Learning in iOS: CoreML Framework (2019)

31. Wang, Y., Huang, R., Song, S., Huang, Z., Huang, G.: Not all images are worth
16x16 words: Dynamic transformers for efficient image recognition. In: Advances
in Neural Information Processing Systems (NeurIPS) (2021)

32. Wang, Y., Lv, K., Huang, R., Song, S., Yang, L., Huang, G.: Glance and focus:
A dynamic approach to reducing spatial redundancy in image classification. In:
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020

33. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution adaptive
networks for efficient inference. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2020)

34. Yang, L., Jiang, H., Cai, R., Wang, Y., Song, S., Huang, G., Tian, Q.: Con-
densenet v2: Sparse feature reactivation for deep networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 3569–3578 (June 2021)

35. Yu, H., Li, H., Hua, G., Huang, G., Shi, H.: Boosted dynamic neural networks. In:
Williams, B., Chen, Y., Neville, J. (eds.) Thirty-Seventh AAAI Conference on Arti-
ficial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2023,. pp. 10989–10997. AAAI Press (2023)

36. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2018)

37. Zhu, M., Han, K., Wu, E., Zhang, Q., Nie, Y., Lan, Z., Wang, Y.: Dynamic Res-
olution Network. In: Advances in Neural Information Processing Systems. vol. 34,
pp. 27319–27330. Curran Associates, Inc. (2021)

Title Suppressed Due to Excessive Length 1

Balancing Accuracy and Efficiency in
Budget-Aware Early-Exiting Neural Networks

Supplementary Materials

A Datasets

The CIFAR-10/100 dataset consist of 32⇥ 32 RGB natural images, respectively
representing 10 and 100 distinct classes. Each dataset comprises 50,000 training
images and 10,000 testing images. Following the approach detailed in [15], a
validation set is formed by selecting 5,000 training images to determine the
optimal confidence threshold for adaptive inference. In contrast, the ImageNet
dataset offers 1.2 million images distributed across 1,000 classes for training,
along with an additional 50,000 images for validation purposes. In tasks involving
adaptive inference, the initial validation set is repurposed as the testing dataset.
Moreover, a separate validation subset is created by extracting 50,000 training
images to ascertain the optimal confidence threshold.

B Training and Data Augmentation

Our training scheme employs stochastic gradient descent (SGD) for CIFAR-
10/100 and AdamW for ImageNet, both with a cosine learning rate schedule.
The batch sizes are set to 64 for the CIFAR datasets and 1024 for the Ima-
geNet dataset. The training protocols encompass a momentum value of 0.9 and
a weight decay of 10�4 for CIFAR. For ImageNet, the weight decay is set at
0.05, and there are 20 epochs of warm-up. Notably, for the CIFAR datasets,
model training is started from scratch, spanning 300 epochs, starting with a
learning rate of 0.1 and decreasing it to 1⇥ 10�3. In contrast, for the ImageNet
dataset, an initial learning rate of 10�3 is used decreased to 1 ⇥ 10�6. To en-
rich the datasets, we employ data augmentation (DA) strategies following the
methodology. This includes randomly cropping images to 32 ⇥ 32 pixels after
applying zero padding (4 pixels on each side). Additionally, images are hori-
zontally flipped with a 50% probability, and RGB channels are normalized by
subtracting the respective channel mean and dividing by its standard deviation.
To further improve the model performance, we integrate established techniques
such as Mixup with � = 0.8, Cutmix with � = 1.0, RandAugment, the vari-
ant labeled as ’rand-m9-mstd0.5-inc1’ is used, Random Erasing with p = 0.25,
color jitter and network regularization with label smoothing which has 0.1 for
value. We employ Exponential Moving Average (EMA) with momentum equal
to 0.9999 because it mitigates overfitting in larger models.

In our training setup, we employed specific configurations tailored to our
task. For CIFAR-10/100, we utilized Confidence and Entropy as input features,

2 Y. Addad et al.

while for ImageNet, we included Confidence, Margin, and Entropy. Our MLP
architecture consisted of a single hidden layer with a dimensionality of 500 for
both datasets. We trained the model with a learning rate initially set to 1 ⇥
10�3, which was gradually reduced using a cosine scheduler to 1⇥ 10�5 for both
datasets. Additionally, we applied regularization with parameter � to control the
cost function, and temperature of T for the probability calculation. Due to the
ease of training a Multilayer Perceptron (MLP), we opted to update our network,
parameterized with �, at intervals of 10 for CIFAR-10/100 and intervals of 100
for ImageNet.

C Model Configuration

We compare our model to the best performing related works, namely MSD-
Net [15], RANet [33], and L2W-MSDNet[10]. Furthermore, we assess various
alternative post-hoc methods, including calibrated-DNN [26] and EENet [16].
Throughout all experiments, we strictly follow the predefined architecture and
employ the provided code across all methods, maintaining identical hyperpa-
rameters. Given our primary aim of improving Budgeted Batch Classification,
we maintain consistency by employing the identical architecture for Anytime
Prediction. For the CIFAR dataset, we employ MSDNet [15] using three distinct
scales: 32⇥32, 16⇥16, and 8⇥8. The associated input channels are (16, 32, 64),
and growth rates are (6, 12, 24). Following training, the MSDNet [15] consist of
7 classifiers. Each classifier corresponds to

PK
i=1 i-th layer. Regarding the Im-

ageNet dataset, the MSDNet [15] architecture employs four scales. Here, the
k-th classifier is situated at the (7 ⇥ k + 7)-th layer, where k = 5. For RANet
[33] applied to CIFAR10/100, we utilized Model-C-3, which comprises four base
scales: 32 ⇥ 32, 16 ⇥ 16, 8 ⇥ 8, and 8 ⇥ 8. The associated input channels are
(16, 16, 32, 64), with growth rates of (6, 6, 12, 24), respectively. For ImageNet, we
employed Model-I-2, featuring four scales with base feature channel numbers set
at 64, 128, 128, and 256. The growth rates for these scales were specified as 16,
32, 32, and 64, respectively.

