AI-Driven Prediction of Treatment Efficacy in
Glioblastoma Using Medical Imaging
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Abstract. Brain tumors represent a significant proportion of cancers in
humans, with an incidence that continues to rise. Glioblastoma, the most
aggressive tumor, demonstrates a variable response to treatment. Pa-
tients diagnosed with glioblastoma have a median survival of 15 months.
A major challenge is that treatment efficacy, evaluated by anatomical
MRI, becomes apparent more than two months after initiation. Given
the limited survival time, early identification of non-responders before
treatment onset is crucial. A binary classification model was performed
on a cohort diagnosed with glioblastoma and treated between 2018 and
2023 at our center. Initially, treatment efficacy prediction was assessed
using only the surgical criterion. The obtained sensitivity, specificity, and
accuracy were 79.78%, 59.30% and 69.71%, respectively. Subsequently,
a classifier was pre-trained using transfer learning on the ResNet-51Q
model. This model takes as input nine central slices of pre-treatment MRI
per patient. The results obtained on the test set were 79.10%, 90.74%,
and 81.68% for sensitivity, specificity, and accuracy respectively. Deep
hybrid learning (DHL) models were trained to include clinical data, with
84.38%, 94.74% and 90.00% for sensitivity, specificity, and accuracy re-
spectively. Compared with the criterion of surgery alone, the deep learn-
ing approach improves the prediction of treatment efficacy prior to its
administration. We enhanced performance by incorporating clinical data.
Using models to predict treatment efficacy in GBM patients from pre-
treatment data has considerable potential for personalising treatment
regimens.
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1 Introduction

Glioblastoma is the most common primary malignant brain tumors in adults.
Standard treatment for these tumors follows the Stupp protocol, which includes
surgery, radiotherapy and chemotherapy [9]. The median survival for patients
with glioblastoma is approximately 15 months [11]. Despite these therapeutic
approaches, treatment response remains heterogeneous, with some patients re-
sponding well to treatment while others do not. The assessment of treatment effi-
cacy primarily relies on measuring lesion size at various intervals post-treatment,
following the Response Assessment in Neuro-Oncology (RANO) criteria [12].
However, in clinical practice, determining the efficacy or the non-efficacy of ther-
apies typically requires a delay of up to two months. This delay is significant
given the limited median survival of glioblastoma patients.

Several studies, as highlighted in a literature review [7], have investigated
methods to predict treatment response in patients with glioblastomas and brain
metastases. Additionally, [2] demonstrated that the quality of surgical interven-
tion plays a crucial role in improving patient survival.

The first approach is based on predicting treatment efficacy using imaging
biomarkers. [10, 6] have demonstrated that it is possible to evaluate treatment ef-
fectiveness as early as one day after its administration. However, this method has
limitations. Patients have already received chemotherapy and radiation therapy,
and they may be subject to their side effects.

More recent studies have focused on leveraging radiomics and artificial in-
telligence (AI) to predict treatment efficacy prior to its administration. These
studies indicate that combining imaging data with clinical information signif-
icantly improves the performance of predictive models [5]. Nevertheless, these
studies are often conducted on small patient cohorts, limiting the robustness and
generalizability of the models, which hinders their reliability and applicability in
routine clinical routine.

Therefore, developing robust and generalizable predictive tools to assess ther-
apeutic efficacy before treatment administration is essential. These tools must go
beyond the limitations of current evaluations based on anatomical magnetic res-
onance imaging (MRI), providing improved patient management and minimizing
the risks associated with ineffective treatments.

However, to our knowledge, no deep learning model with a large cohort is used
in routine clinical practice to predict treatment efficacy prior to administration.
In this study, we present a binary deep learning model able to predict treatment
efficacy before its initiation.

2 Materials and methods

2.1 Patient cohort

The present retrospective study received approval from the local institutional
review board and was conducted in compliance with the principles outlined in
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the Declaration of Helsinki and the MR-004 guidelines established by the French
National Institute for Health Data (INDS) for health research. Informed consent
was obtained from all participants for the use of their data. The study population
consisted of 175 patients diagnosed with glioblastoma and treated at Francgois
Baclesse center between January 2018 and December 2023. For the purposes of
this investigation, short-term and long-term survivors were categorized based on
the median survival of the entire patient cohort. Patients with a median survival
of less than 332 days were classified as short-term survivors, while those with
a median survival of 332 days or more were classified as long-term survivors.
Detailed information regarding the study population is presented in Table 1.

Table 1: Patient cohort described overall (all patients) and by survival outcome
(Short-Term or Long-Term survivors defined as < or > 332 days, respectively).

All Patients Short-Term Long-Term

(n= 175) (n= 86) (n= 89)
Survival mean: 363.4 mean: 163.6 mean: 556.5
(days) median: 332.0 median: 137.0 median: 492.0

min-max: [42.0-1600.0] min-max: [42.0-329.0] min-max: [332.0-1600.0]

Sex, n (%)  Female: 74 (42.3%) Female: 39 (45.3%) Female: 35 (39.3%)

Male: 101 (57.7%) Male: 47 (54.7%) Male: 54 (60.7%)
Age at the mean: 67.7 mean: 70.4 mean: 65.1
diagnosis median: 69.3 median: 71.3 median: 65.6

(years) min-max: [25.5-88.9]  min-max: [25.5-88.9]  min-max: [42.3-83.7]

Surgery Biopsy: 69 (39.4%) Biopsy: 51 (59.3%) Biopsy: 18 (20.2%)
Type, Incomplete: 62 (35.4%) Incomplete: 28 (32.6%) Incomplete: 34 (38.2%)
n (%) Complete: 44 (25.1%) Complete: 7 (8.1%)  Complete: 37 (41.6%)

WHO 0: 27 (154%) 0: 7 (8.1%) 0: 20 (22.5%)
performance 1: 95 (64.3%) 1: 40 (46.5%) 1: 55 (61.8%)
status, n (%) 2: 45 (25.7%) 2: 32 (87.2%) 2: 13 (14.6%)

3: 8 (4.6%) 3:7 (8.1%) 3: 1 (1.1%)
4: 0 (0.0%) 4: 0 (0.0%) 4: 0 (0.0%)
5:0 (0.0%) 5:0 (0.0%) 5:0 (0.0%)

2.2 Medical imaging acquisition

MRI was conducted using a 16-channel brain dedicated coil on a 1.5/3 Tesla
SIEMENS AREA /VIDA MRI scanner with patients in a supine position. Prior to
the examination, each patient received an injection of DOTATEM at a dose of 0.2
mL/keg (500 pmol/ml). The imaging process began with a shimming procedure
and scout scan, followed by tumor gadolinium enhancement detection using a
post-Gd T1 brain sequence with the following parameters: TR/TEff = 2070/3.15
msec; Angle=15°; NEX = 1; 208 contiguous slices; 3D resolution = 0.5x0.5x1
mm; acquisition matrix = 512x512 pixels. A total of 36,400 2D MR images were
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acquired from 175 patients. In order to account for variations in slice thickness
and spacing between images, a resampling procedure was performed. For the
purposes of this study, nine central slices containing the tumor were selected to
ensure inclusion of the largest parts of the tumor.

2.3 Deep learning model

ResNet-51Q architecture: In this study, we employed an Al methodology
utilizing a network architecture inspired by ResNet-50 [4]. To enhance efficiency
and learning capabilities, the ResNet-51Q [13] network introduced several key
modifications to the ResNet-50 framework. While maitaining a bottleneck-like
structure similar to ResNet-50, ResNet-51Q incorporates enhanced convolutional
operations. It initiates with a quadruple convolutional stem comprising two acti-
vation layers, diverging from the traditional max pooling layer found in ResNet-
50. The architecture comprises four primary blocks with depths of 2, 4, 6 and
4, constrasting with the ResNet-50 configuration of 3, 4, 6, and 3. A notable
distinction lies in the convolutional methodology: ResNet-51Q employs grouped
convolutions with a group size of 32 and a bottleneck ratio of 0.25 across the
initial three blocks, whereas ResNet-50 utilizes standard convolutions. The final
block incorporates depthwise convolutions with a ratio of 1.0 to further opti-
mize efficiency. Additionally, the channel dimensions increase from 256 to 512,
reaching a constant value of 1536 at the final stage, in contrast to the ResNet-50
progression to 2048 channels in its final stage. Futhermore, ResNet-51Q enhances
gradient propagation and convergence by replacing the standard ReLu activation
function of ResNet-50 wuth the SiLU (Sigmoid Linear Unit). The ResNet-51Q
system is optimally designed for contemporary deep learning applications that
require both high processing capability and effective resource utilisation. This is
due to the architectural enhancements that facilitate an optimal balance between
depth, computational efficiency and representational power.

Model development: The deep learning model developed for this study em-
ployed a fine-tuned ResNet-51Q architecture. The model was developed using a
unique set of 1575 T1-Gd brain images obtained from 175 patients. The dataset
was split into three subsets: a training set with 936 images (60% of the total), a
validation set with 306 images (20% of the total), and a test set with 333 images
(20% of the total). Furthermore, it is essential to verify that all slices of a pa-
tient are contained within a single dataset. To optimize the model’s performance,
hyperparameters were adjusted using the Optuna software [1], employing the
Bayesian Tree-structured Parzen Estimator (TPE) approach. Hyperparameters
tested included a learning rate ranging from 10~7 to 10~2, weight decay between
107% and 102, and dropout values of 0.1 to 0.5. The deep learning model was
trained using binary cross entropy as the loss function, utilizing one NVIDIA
P6000 GPU with 24GB of memory. The code used for developing and training the
AT model is publicly available at: https://github.com/AurelienCD/MRI-PRED-
GBM.
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Deep Hybrid Learning: To leverage the deep learning model using pre-
treatment MRI as input and the machine learning model ( Decision TreeClassifier,
LogisticRegression, GaussianNB, SVC, LinearDiscriminantAnalysis, XGBClas-
sifier, KNeighborsClassifier and RandomForestClassifier) using clinical data as
input, both models were combined to create a deep hybrid learning (DHL) model.
The probabilities predicted by our deep learning model for each patient belong-
ing to a specific class were concatenated with a vector representing the clinical
data.

3 Results

3.1 Evaluation of surgery criteria for survival classification without
artificial intelligence model

In the literature, the surgical criterion is identified as a predictor of overall
survival. Therefore, the first approach involved conducting a one-way analysis of
variance (ANOVA) to assess significant differences between the studied groups
(biopsy only, incomplete and complete surgery) in relation to overall survival.
As illustrated in Figure 1, the results indicate a p-value of 5e-7, a mean value
=+ standard deviation of 241.61 + 191.24, 404.32 4+ 271.31 and 496.70 + 282.83
for biopsy, incomplete surgery and complete surgery, respectively. As shown in
study [2] and our own data, the surgical criterion appears to have a significant
effect on overall survival. It will be relevant to investigate whether surgery alone
could serve as a predictive factor for overall patient survival.

800 *

Overall survival (days)
FY

Biopsy Incomplete surgery Complete surgery

Fig.1: Impact of surgery quality on overall survival: Mean + SD (Standard
Deviation) , n=69 ; 62 ; 44 for biopsy, incomplete surgery, complete surgery
respectively, * p < 0.001 vs biopsy.
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The second approach was to analyse the effect of surgery on the classifica-
tion of patient survival (short-term and long-term survivors). To achieve this,
an analysis was conducted without the use of AI. We examined the impact of
surgical criteria (biopsy vs. incomplete and complete surgery) on patient survival
classification. As shown in the Table 2 this study indicates that surgery alone is
not a reliable criterion for classifying patients as responders or non-responders,
due to a low accuracy of 69.71%. Moreover, in a medical context, minimizing
false positives is crucial. A specificity of 59.30% is therefore not clinically ac-
ceptable. The next step is to assess whether Al-based approaches can improve
classification performance.

Table 2: Performances based only on surgery criteria.

Accuracy Sensitivity Specificity True False False True
(%) (%) (%) Positive Positive Negative Negative
69.71 79.78 59.30 71 35 18 51

3.2 Responding and non-responding patient classification model
based only on pre-treatment MRI

We then used an Al model, with only pre-treatment MRI as input data, to
classify patients into two categories: short-term or long-term survivors, based on
the median survival of all patients (Figure 2). As shown in Figure 2, AT model
is able to predict from pre-treatment MRI that a patient will be a long-term
survivor (left part of Figure 2) or a short-term survivor (right part of Figure 2).
The binary classification model performed well, with an AUC (Area Under the
Curve) of 0.89 (Figure 3a) and an accuracy, specificity and sensitivity of 81.68%,
90.74% and 73.10% respectively.

Fig. 2: Long-term survivor (left part) or a short-term survivor (right part).
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Fig.3: ROC curve and confusion matrix of binary model based on only pre-
treatment MRI.

Table 3: Performances based only on pre-treatment MRI.

AUC Accuracy Sensitivity Specificity True False False True
(%) (%) (%) Positive Positive Negative Negative
0.89 81.68 73.10 90.74 125 15 46 147

3.3 Impact of adding clinical data to the MRI deep learning model
in the performance of predicting responding to non-responding
patients

We aimed to investigate whether the inclusion of clinical data (WHO perfor-
mance status, age, sexe and surgery type) improves the performances of the
model. For this purpose, we developed a DHL model that combined a pre-
treatment MRI deep learning model prediction with a classification machine
learning model integrating clinical data. Following performance evaluation and
optimization of the hyperparameters, it was determined that KNeighborsClassi-
fier demonstrated the optimal performance. The performance evaluation of this
model revealed an accuracy 90.00% (+8.32% compared to the model based only
on pre-treatment MRI), a specificity of 94.74% (+4.00%) and a sensitivity of
84.38% (+11.28%).

Table 4: Performances based on pre-treatment MRI and clinical data.

AUC Accuracy Sensitivity Specificity True False False True
(%) (%) (%) Positive Positive Negative Negative
0.90 90.00 84.38 94.74 27 2 5 36
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Fig.4: ROC curve and confusion matrix of binary model based on pre-treatment
MRI and clinical data.

4 Discussion

In clinical practice, the assessment of glioblastoma treatment efficacy is only
possible at least two months after initiation, a relatively long delay considering
the median patient survival of 15 months. To anticipate this evaluation, we
proposed an Al model using nine central slices of pre-treatment MRI as input
data to distinguish short-term survivors to long-term survivors using a threshold
of 332 days after MRI acquisition. We experimented with additional slices, but
the performance gains were minimal.

A recent study [3] investigated glioblastoma survival prediction eight months
after radiotherapy, corresponding to the completion of adjuvant temozolomide
treatment. This study, conducted on 206 patients from 11 centers, relied on the
first post-radiotherapy brain MRI. The imaging-based model achieved an accu-
racy of 0.84 and a specificity of 0.77 in a retrospective analysis of 19 patients
from two centers, showing performance comparable to ours. Given that this study
relied on post-treatment MRI, our results obtained from pre-treatment MRI ap-
pear even more promising. Other studies have investigated survival classification
for glioblastoma patients based on pre-traitement imaging. To predict survival
stratification of 125 patients with GBM, a clinical study [5] was performed. MRI
images were used to extract radiomic features. With an AUC of 0.92, the SVM
model surpassed the other two machine learning models tested. Another study
[6] used a deep convolutional neural network (CNN) with three hidden layers,
each with eight neurons, to predict patient survival of 133 patients. The CNN
performed well, classifying survival (less than one year, one to two years and
more than two years) with an accuracy of 90.6%. The studies are based on small
cohorts of data (less than 150 patients). However, for the use of AT models, large
data cohorts are required [8]. The performance of the models presented in the
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literature is enhanced by the incorporation of clinical data, and the results are
consistent with those of our study.

We chose to formulate the problem as a classification task rather than a re-
gression problem, given the limited number of patients within each category.
Nevertheless, introducing more classes (e.g., 3 or 4) could approximate a re-
gression framework by enabling the assignment of probability distributions over
these classes for each patient.

5 Conclusion

In conclusion, predicting the effectiveness of treatments for patients with glioblas-
toma is crucial given the median survival of 15 months and high patient response
heterogeneity. The results obtained in this study show high accuracy of 90.00%
to predict treatment efficacy only using pre-treatment information with MRI
and clinical data. However, the addition of clinical data through deep hybrid
learning has further improved these results by 8.32%. A potential perspective
for this study, is to develop other models for discriminating the model with more
class.
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