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Abstract  

In brain tumors, glioblastoma (GBM) is the most common and aggressive’s one and brain 

metastases (BM) are occurring in 20-40% of cancer patients. Even with intensive treatment 

involving radiotherapy and surgery, which frequently leads to cognitive decline due to doses 

on healthy brain tissue, the median survival is 15 months for GBM and about six to nine for 

BM. Despite these treatments, GBM patients respond heterogeneously as do patient with BM. 

Following standard of care, some patients will respond and have an overall survival of more 

than 30 months and others will not respond and will die within a few months. Differentiating 

non-responders from responders as early as possible in order to tailor treatment in a 

personalized medicine fashion to optimize tumor control and preserve healthy brain tissue is 

the most pressing unmet therapeutic challenge. Innovative computer solutions recently emerged 

and could help for this challenge. This review will focus on fifty-two published research 

between 2013 to 2024 on (1) the early characterization of treatment efficacy with biomarkers 

imaging and radiomic-based solutions, (2) predictive solutions with radiomic and artificial 

intelligence-based solutions, (3) interest of other biomarkers and (4) the importance of the 

prediction of new treatment modalities efficacy. 

 

 

 

 

 

 

List of abbreviations: AI: artificial intelligence; AUC: area under the ROC curve; BM: brain 

metastases; CNN: convolutional neural network; DL: deep learning; GBM: glioblastoma; ML: 

machine learning; SVM: support vector machine; UNETR: UNEt Transformers 
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Introduction 

Brain tumors are highly heterogeneous neoplasms from a histological point of view but also from an 

intratumor temporal and spatial.  

Despite treatments including surgery, chemotherapy and radiotherapy patients with brain tumors 

respond heterogeneously. Same treatment will conduct to different treatment outcome. Treatment 

efficacy is currently evaluated using anatomical MRI several months after treatment initiation. 

Differentiating non-responders from responders as early as possible in order to tailor treatment in a 

personalized medicine fashion to optimize tumor control is the most pressing unmet therapeutic 

challenge. 

In this review, we will provide an overview of current research on treatment response assessment for a 

very aggressive and brain tumor called glioblastoma (GBM) and for a frequent brain tumor: brain 

metastases (BM). To provide a clear structure and taxonomy of the reviewed literature, we have 

categorized the studies into the following sections: 

Introduction: 

• Overview of brain cancer and the therapeutic challenge of early characterization and prediction 

of treatment response. 

Early characterization of brain cancer treatment efficacy: 

• Review of studies using functional imaging biomarker with MRI, PET, CT with intensity 

thresholding as for the early detection in the next days after treatment initiation. 

Prediction of treatment response: 

• Brief introduction to radiomics and its potential in medical imaging and treatment response 

assessment. 

• Studies utilizing radiomics for extracting quantitative features from clinical routine MRI as 

input for predicting treatment response in brain cancer patients before its initiation. 

• Brief introduction to AI and its potential in medical imaging and treatment response assessment. 

• Research on various machine learning algorithms (e.g., support vector machines, random 

forests, neural networks) and studies using deep learning techniques, such as CNNs, recurrent neural 
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networks (RNNs), Transformers… to predict treatment outcome before its initiation. 

Challenges and future directions for assessment of new treatment efficacy 

Following the structure of the research and the taxonomy above, in this review, we will firstly focused 

on early characterization, which involves evaluation shortly after treatment initiation and mainly relies 

on imaging biomarkers/readouts. We will then focus on the ability to predict treatment efficacy before 

its initiation using radiomics and new innovative approaches using artificial intelligence (AI) (Figure 

1). Artificial intelligence (AI) aims to mimic human intelligence through algorithms executed in a 

computer environment. AI algorithms are increasingly being studied in the field of medical imaging, 

whether for image processing, diagnosis or prediction of patient prognosis  [1]. One of the benefits of 

AI is its ability to handle large data sets and extract relevant information that is difficult to obtain through 

human intelligence. For those reasons, more important focus was made on AI solutions. 

 

Figure 1 - The challenge of early and predictive characterisation of therapeutic efficacy in glioblastoma 

and brain metastases 

 

Article selection methodology:  

Databases: We conducted a comprehensive search using multiple databases, including PubMed, Web of 

Science, and Google Scholar. The search terms used were "Artificial Intelligence," "radiomics," "brain 
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cancer," "treatment response," "glioblastoma," "brain metastases," "prediction," "machine learning," 

"deep learning," and related synonyms. 

Time Frame: We considered articles published from January 2012 to the present to ensure the inclusion 

of the most recent advancements. 

Selection Process: Articles were selected based on their novelty, number of patients, unique or 

multicentre approaches and pertinence about the therapeutic challenge. 

Study Design: We included original research articles and review papers; no case studies were included. 

Quality: Only peer-reviewed articles from reputable journals and conferences were considered to ensure 

the reliability and validity of the findings. 

Data Extraction: Relevant data, including study design, novelty of the AI techniques used, outcomes, 

and limitations, were extracted from each selected article. 

 

Current management of brain tumors 

GBM is the most common and aggressive primary brain tumor. Despite treatments including surgical 

resection, radiotherapy and chemotherapy, the overall survival remains low (survival median of 15 

months) with a high rate of tumor recurrence [2]. While GBM has an incidence of 3.22 per 100 000 [3], 

BM affect 20 to 40% of cancer patients [4] and represent the most common primary tumor with an 

incidence three to ten times higher than primary brain tumors [5]. BM occur more frequently in patients 

with melanoma, lung or breast cancer (70%, 40% and 20% respectively [6]). As for GBM, despite 

aggressive treatment with radiotherapy and surgery which often led to cognitive decline due to healthy 

brain tissue dose toxicity, the survival median for patients with BM is very short and is about six to nine 

months from the diagnosis of BM [7].  

 

Therapeutic challenges 

Patients with GBM (as well as patients with BM) present heterogeneous treatment responses [8]. For 

the standard treatment (corresponding to surgery plus Stupp regimen), some GBM patients (a minority) 



   

 

6 
 

are responders and present overall survival higher than 30 months and others are non-responder and die 

in few months [9]. The pressing unmet therapeutic need is to be able to discriminate as soon as possible 

the non-responder patients from the responders to adapt treatment in a personalized medicine manner to 

optimize tumor control as well as healthy brain tissue preservation.  

The process of evaluating therapeutic response is similar for GBM and BM. The assessment is mainly 

based on response evaluation criteria in solid tumors (RECIST) [10] and response assessment in neuro-

oncology (RANO-BM) [11] criteria which evaluate the evolution of lesion size on anatomical MRI, at 

different times after the treatment.  

However, the issue is that assessment of the efficacy or non-efficacy of therapies, using conventional 

anatomical MRI is only possible approximately two months after the beginning of treatment [12]. 

Indeed, there is too much pseudoprogession or inflammatory response before then and anatomical MRI 

is only able to reach the morphological aspect of the tumor. Focusing on other imaging biomarkers that 

are more specific to tumor biology could help shortening this wasted time, allowing for earlier 

assessment of treatment efficacy [13]. 

 

Subsections relevant for the subject 

 

Early characterization of treatment efficacy 

Biomarkers imaging-based solutions 

As shown in Table 1A, several publications have explored which imaging biomarkers might be more 

effective than anatomical MRI in predicting early therapeutic response (chemotherapy combined with 

anti-angiogenic therapy) and overall survival in patients with GBM, recurrent GBM at the clinical and 

preclinical level. Li and colleagues [14] have shown, on patient, that [18F]-AlF-NOTA-PRGD2 PET/CT 

([18F]-RGD PET/CT) and dynamic contrast-enhanced MRI (DCE-MRI) can assess response to 

treatment, demonstrating that a greater decrease in SUV mean predicts better progression-free survival. 

Magnetic resonance spectroscopy (MRS) can predict early treatment efficacy. Talati and al. [15] 

performed a longitudinal MRI/MRS to study whether changes in N-acetylaspartate (NAA) / Choline 
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(Cho) and Lactate (Lac) / NAA from different times after treatment can predict early therapy failures. 

Changes noted in metabolic levels of NAA/Cho and Lac/NAA were able to predict treatment failure as 

early as one day after anti-angiogenic treatment. This is in accordance with the review made by Qi and 

colleagues [16], who showed the different modalities and biomarkers that enable early characterization 

of therapeutic efficacy. At the preclinical level, Corroyer-Dulmont and al. have shown that that [18F]-

fluoro-thymidine ([18F]-FLT PET) (marker of cell proliferation), compared with other PET ([18F]-

fluorodeoxyglucose ([18F]-FDG PET)) or MRI biomarkers, can characterize treatment efficacy from 

three days after treatment initiation, at a time when anatomical MRI shows no differences [17]. 

Predicting treatment efficacy in recurrent GBM is also an important therapeutic challenge. One clinical 

and one preclinical study have shown the pertinence of using [18F]-FLT PET to predict progression-free 

survival and overall survival in recurrent GBM [18], [19]. 

However, early characterization has a limitation. Even if it is effective, the patient has already undergone 

the treatments (radiotherapy and chemotherapy) and may be exposed to their side effects [20].  

The recent development of innovative computer techniques such as radiomics or more recently Artificial 

Intelligence (AI) could lead to predict a treatment effectiveness before its initiation. This will lead to a 

more personalized medicine where not responder patient will gain precious months without undergoing 

an unnecessary costly treatment that could potentially lead to adverse effects [21]. 

Predictive solutions 

Radiomic-based solutions 

The term “radiomics”, first appeared in 2012 the literature through an article published by Lambin and 

al. [22]. This approach, focused on medical imaging data, aims to extract a large set of features from an 

image for a better characterization of tumor. Radiomic protocols requires the following six steps: image 

acquisition, image reconstruction and pre-processing, segmentation, resampling, features extraction, 

features selection and model based feature construction [23]. Due to these various steps, the use of 

radiomics aims to be potentially predictive than imaging biomarkers analyses based on basic features as 

mean or peak intensity. Images characteristic are subjected to a more in-depth analysis, making the 
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features more relevant for prediction, and consequently, the results are more effective. Radiomics 

models are capable of predicting therapeutic response or overall survival [23].  

In that context, the use of radiomics to develop models capable of predicting treatment response prior 

to brain tumors treatment initiation has been explored in several studies.  

One of these studies [24] investigated the extraction of radiomic features from post-treatment MRI in 

patients with BM to predict local tumor control with an estimation of the tumor volume percentage 

compared to pre-treatment and overall survival with respectively 256 and 237 patients. Three models 

were constructed through the training of support vector machines (SVM) using a Gaussian kernel and 

Bayesian optimization for hyperparameter tuning: i) on clinical features (age, gender overall survival, 

numbers of tumors, local tumor control, median dose…), ii) radiomic features and iii) combined clinical 

and radiomic features. For both prediction objectives, model combining clinical and radiomic features 

achieved very interesting performances with an area under the receiver operating characteristic curve 

(AUC) of 0.95 for local tumor control and 0.82 for overall survival.  

Furthermore, a clinical study [25] was conducted to predict survival stratification of 125 patients with 

GBM. Radiomic features were extracted from MRI images. Among the three tested machine learning 

(ML) models, the SVM model demonstrated the best performance, with an AUC of 0.92.  

Table 1B [24], [25], [26], [27], [28] summarizes several studies on the prediction of treatment response 

based on radiomics obtained from pre-treatment imaging. In all studies, the AUC is between 0.62 and 

0.95. All these studies highlight combining radiomic features with clinical features enhances prediction 

performance. However, radiomics has some limitations for routine clinical application. Most published 

studies have relatively small patient cohort especially for GBM. However, to develop effective models, 

a sufficiently large training and test set is mandatory [29]. Due to its complexity, radiomics presents the 

challenge of low interpretability of the features and models used, rising caution among physicians 

regarding the use of radiomics models in clinical settings [30]. Beyond these points, main limitation of 

radiomics remains the low stability and inter-hospital portability of the models [29]. To answer to that 

challenge, initiative like the “Imaging Biomarker Standardization Initiative (IBSI)” [31] have been 
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developed to harmonize radiomic features extraction, however the robustness of these predictive models 

is still an issue before their adoption as a standard of care as shown by Peerlings and colleagues [32] for 

diffusion MRI or CT [33] or even for Test-Retest in PET imaging [34]. 

Therefore, it is timely to explore more innovative current developments in AI that may enable predictive 

characterization of treatment efficacy. Deep learning (DL) is known to be able to extract more complex 

and largest number of features in medical imaging than radiomics which could lead to better 

performance [35]. 

 

Artificial intelligence-based solutions 

Several studies have evaluated the interest of AI algorithms to assess therapeutic efficacy GBM and 

BM. A clinical study [36] involving 124 patients with BM, developed a convolutional neural network 

(CNN)-based architecture to extract features from each MRI slice to predict the outcome of local 

control/failure in BM treated with stereotactic radiation therapy. A CNN is a type of deep learning neural 

network specifically designed to process structured data arrays, like images. They integrated an 

InceptionResentV2 CNN architecture and a Transformer (to consider spatial dependences between MRI 

slices during modelling). Depending on the mechanism of integration of information from each MRI 

slice, the AUC ranged from 0.72 to 0.86. The best performance was obtained with the combination of 

DL features obtained from anatomical MRI with clinical variables (tumor size, age, gender, tumor 

location, histology, total dose, previous WBRT, number of BM …). 

In a study including 30 patients (15 with low-grade glioma and 15 with GBM), Vollmuth et al. [37]  

demonstrated that AI using Artificial Neural Network (ANN) for brain and then tumor segmentations 

has the potential to provide a more reproducible and standardized assessment of treatment response on 

MRI compared to manual 2-dimensional measurements of tumor burden using RANO criteria. Time to 

progression (TTP) was initially evaluated according to RANO criteria based on MRI, and then 

revaluated by incorporating additional information from AI-enhanced MRI sequences that describe 

longitudinal changes in tumor volume. The inter-observer concordance correlation coefficient (CCC) 

for TTP measurements was 0.77 using the RANO criteria alone. With the addition of AI, the CCC 
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increased to 0.91. This improvement was most observed in patients with low-grade gliomas (0.70 

without AI vs. 0.90 with AI). Due to the less aggressive nature of these tumors, reliable assessment of 

TTP can be more difficult. 

As previous study, Luckett et al [38] show good performance with accuracy of 90.6% in classifying 

survival (< one year,1-2 years, >2 years) employing a deep feedforward convolutional neural network 

(CNN) comprising three hidden layers with eight neurons in each layer to predict patient survival in a 

cohort of 133 individuals. Ortega-Martorell and colleagues also shown good performance of one 

dimension-CNN in preclinical study to track therapy response in GBM [39]. The 1D-CNN were more 

performant than different machine learning models showing the superiority of deep learning methods. 

Our review of the literature reveals that the CNN exhibits superior performance. Although the 

architecture is not novel, it is particularly suited to medical imaging, and currently offers the most 

effective means of predicting treatment efficacy [40]. 

Table 1C [36], [37], [38], [39] summarizes several studies on the prediction of treatment response based 

on AI algorithms from pre-treatment MRI. As in the radiomics-based studies, the best performance is 

achieved by combining imaging data with clinical information. 

Many studies applying AI in this field are based on relatively small data cohorts (less than 100 for 

GBM). However, a large data cohort is essential for optimal training of AI models [41]. Centralizing a 

large amount of data in a single centre can be challenging, and the performances of models are not 

always transferable between centres. Federated learning [42] addresses this issue by enabling learning 

from distributed data without transferring it between sites.  Federated Learning is a deep learning 

paradigm in which a model is trained across multiple decentralized devices or servers located in various 

medical centers, each holding local data samples, without the need to exchange the raw data. The only 

parameters shared among the different hospitals are the model parameters, not the raw medical data. 

In addition, AI methodology is constantly evolving and new architectures appear every year. The models 

we have presented in this review give an overview of what is being done today, but new architectures 

such as diffusion models or full transformers should be more and more present in the years to come. 

One example is UNEt TRansformers (UNETR) [43], which adapts the CNN encoder/decoder models 
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proposed by UNET to transformer architectures in order to process sequential representations of the 

input volume more efficiently. Transformers are a type of artificial intelligence model designed to 

efficiently process sequential data, such as text. Functional imaging such as proliferation index or other 

indicators is more relevant for assessing therapeutic efficacy [17]. To our knowledge, no study involving 

AI models uses functional imaging biomarkers for prediction GBM efficacy as all the articles reported 

in this review used clinical routine anatomical MRI. However, in other cancers with radiomic models,  

Knuth and colleagues as well as Zhang and colleagues support the add value of function biomarkers in 

comparison to anatomical MRI in rectal [44] and breast cancers respectively [45]. 

Opting for more functional imaging biomarkers instead of anatomical MRI could potentially improve 

AI performance in predicting treatment efficacy. 

It is important to note that present studies were based on 2016 WHO classification rather than the 2021 

one. To the best of our knowledge, no study has yet evaluated the potential of AI models to predict 

treatment outcomes of GBM according to the WHO 2021 classification. These models may not fully 

reflect current standards and advancements in the field, potentially leading to biases in predictions. 

However, current performance of the AI models to predict treatment outcome are still valid if they do 

not take into account of the grade of the tumor, for example if the input data only take the pre-treatment 

MRI for example. If the model is capable of predicting the treatment outcome of a brain lesion on an 

MRI, it should still be able to do so regardless of whether the brain lesion is designated as a GBM or a 

grade 4 astrocytoma Therefore, it is essential to incorporate recent classifications to ensure that AI 

models are aligned with best clinical practices and provide reliable and relevant recommendations 

 

AI models to distinguish pseudo-progression to recurrence 

For patients with GBM treated in accordance with the established standard protocol, the prevalence of 

pseudoprogression is estimated to range between 20 and 30%. This phenomenon typically manifests 

within one to 12 weeks following the conclusion of treatment and is distinguished by an increase in 

tumor volume and the emergence of new lesions discernible on magnetic resonance imaging (MRI) [46].  

This represents a significant challenge in clinical routine, as it complicates the assessment of treatment 

response and may impact therapeutic decision-making. Distinguishing between pseudoprogression and 
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tumor recurrence is essential for optimal patient management, but this differentiation requires a 

significant amount of imaging. The acquisition of earlier information on potential pseudoprogression 

could enable treatment to be adapted more rapidly. Several studies have shown that radiomics and AI 

could be pertinent tools to predict pseudoprogression. Sun et al., [47] evaluated the diagnostic 

performance of machine learning models using a radiomic model based on contrast-enhanced T1-

weighted MRI to differentiate pseudoprogression from true progression after standard treatment for 77 

patients. The classifier demonstrated limited results with a sensitivity of 78.36% and a specificity of 

61.33%. Another study [48], based on 78 patients with GBM, developed a CNN combined with a LSTM 

to differentiate from anatomical MRI pseudoprogression from progression. The AUC results of the three 

trained models ranged from 0.52 to 0.83. The model that demonstrated the highest performance was the 

one that combined both MRI data and clinical features including age at the time of surgery, gender, 

methylation status of the 06-methylguanine-DNA-methyltransferase (MGMT) promoter, mutational 

status of the isocitrate dehydrogenase (IDH) gene, the total dose and number of fractions of radiotherapy 

and other factors. Moassefi and colleagues [49], developed a DL model to distinguish pseudoprogression 

from true progression for 124 patients, using only clinical routine MRI. The model achieved a mean 

accuracy of 76.4%, a mean AUC of 0.76, a mean sensitivity of 88.72% and a mean specificity of 62.05%.  

Article using nuclear medicine imaging show that radiomics based on FET-PET has able to differentiate 

tumor progression from pseudoprogression [50]. Kebir et al., used FET-PET images in 14 patients and 

applied an unsupervised clustering algorithm for the diagnosis of pseudoprogression, achieving a 

diagnostic accuracy of 75%.  

These studies demonstrate that it is possible to predict pseudoprogression at a relatively early stage, 

which could potentially optimize patient management. However, it is important to note that (1) 

performances of the models are limited with specificity and sensitivity about 0.7 to 0.8 and (2) none of 

these studies have explored the prediction of pseudoprogression using pre-treatment imaging, 

highlighting a significant area for future research.   

 

Interest of other biomarkers 
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This review focuses on the relevance of imaging biomarkers and the use of radiomics and AI based on 

MRI before and after treatment. However, molecular biomarkers can be also used to characterize 

therapeutic efficacy and overall survival. One such molecular biomarkers is the methylation status of 

MGMT [51]. The 1p/19q codeletion and loss of chromosome 10 are also predictive of therapeutic 

response [52]. Although these biomarkers are used in routine clinical practice, the cost of testing, limited 

resources and analysis time may be limiting factors for some patients [53]. In contrast, MRI and RT 

DOSE are performed for each patient.  

In addition, a biopsy is only performed on a part of the tumor. Since GBM are recognized as highly 

heterogeneous tumors, molecular or protein expression will not be representative of the entire tumor, 

introducing a variability in the evaluation of therapeutic response [54]. Therefore, imaging biomarkers 

appear to be the most suitable for routine clinical application. 

 

New treatment modalities 

Predicting the efficacy of treatments is of great interest for responder patients. However, for non-

responder patients, the use of new treatment modalities is essential, one of them are proton therapy and 

carbon ion therapy. It is essential to conduct studies in these areas to assess the appropriateness of using 

one treatment over another, based on expected therapeutic efficacy. These studies are of crucial 

importance for the integration of these new treatments, which still need to be validated, especially 

through clinical trials [55]. In this context, AI tool enabling to predict treatment efficacy before the 

initiation would be of significant interest. 

 

Conclusion: 

The practical applications of AI and radiomics in the management of brain cancer are significant. These 

technologies enable earlier diagnosis, facilitating rapid and personalized treatment plans. For patients, 

this translates into better clinical outcomes and improved quality of life, in particular through the rapid 

identification of cases of non-response to treatment, opening the way to more appropriate therapeutic 

alternatives. As far as healthcare systems are concerned, AI and radiomics offer the possibility of opti-

mizing the use of resources and reducing the financial impact of costly and ineffective treatments. 
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However, a number of challenges remain. These include the time and effort required to train healthcare 

professionals in the use of these technologies, as well as the management of administrative and regula-

tory obstacles. 

The review highlights the pressing need for early and accurate characterization of treatment efficacy in 

glioblastoma (GBM) and brain metastases (BM), given their aggressive nature and the heterogeneous 

responses to standard treatments. Current methods, relying on anatomical MRI, often fail to provide 

timely assessments due to pseudoprogression, leading to delayed treatment adjustments and potential 

cognitive decline from radiotherapy. 

Early Characterization of Treatment Efficacy: 

Imaging biomarkers, such as PET/CT, DCE-MRI, and MRS, have shown promise in predicting 

treatment response and overall survival earlier than conventional MRI. However, these methods still 

require patients to undergo initial treatments, exposing them to potential side effects. 

Predictive Solutions: 

Radiomics and AI offer innovative approaches to predict treatment efficacy before initiation. Studies 

combining radiomic features with clinical data have achieved high AUC values, indicating strong 

predictive performance. However, radiomics faces challenges such as low interpretability and limited 

inter-hospital portability, which initiatives like the IBSI aim to address. 

Our review show that AI, particularly deep learning techniques like CNNs, has demonstrated superior 

performance in predicting treatment outcomes. Combining AI-extracted features from MRI with clinical 

variables has yielded impressive results, with AUC values ranging from 0.72 to 0.99. Federated learning 

presents a solution to the challenge of data centralization, allowing models to be trained across multiple 

decentralized sites without exchanging raw data. 

Challenges and Future Directions: 

Despite the promising results, several challenges remain. Most studies are based on small patient 

cohorts, which limits the generalizability of the findings. Additionally, the use of functional imaging 



   

 

15 
 

biomarkers, which may provide more relevant information than anatomical MRI, has not been 

extensively explored in AI models for brain efficacy prediction. The integration of radiomics and deep 

learning in neuro-oncology has led to significant advancements in the management of gliomas, 

particularly by exploiting complex imaging features to predict molecular and clinical profiles. However, 

significant challenges remain, including the harmonization of multimodal data. Future reseach should 

focus on developing federated learning frameworks and enhancing model interpretability [56]. 

Pseudoprogression and New Treatment Modalities: 

Distinguishing pseudoprogression from true progression is crucial for optimal patient management. 

Radiomics and AI have shown potential in this area, however, the performance of these models is 

limited, and predicting pseudoprogression using pre-treatment imaging remains an not enough explored 

area.  

AI and radiomics model can have some limitation that have to be pointed out.  

(a) Bias in training data or learning algorithms: Biases in training data represent a major challenge for 

training AI models. If the dataset used is not representative of the overall population, model performance 

is likely to degrade, particularly for more diverse patient groups. To limit these biases and better explain 

model behaviours, a data quality process is essential. This helps to identify and address potential gaps 

in the distribution of the data used.  

(b) AI Reliability in a Clinical Situation, Especially with Patient Populations That Are Part of More 

Heterogeneous Groups: The reliability of AI systems in the clinical setting is a fundamental issue, 

especially when it comes to treating heterogeneous patient populations. For example, brain tumors such 

as GBM and BM present great heterogeneity both between tumors and within the same tumor. This 

diversity can limit the ability of AI models to generalize effectively. To address this, it is essential to 

rigorously validate these models and continuously adapt them using updated data. In addition, the study 

of model explainability is essential to understand the decisions made by models. 
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Moreover, patients included in clinical trials are not representative of the general population of patients 

in clinical practice because the selection criteria are strict. Consequently, the results of most clinical 

trials do not allow the same conclusions to be drawn in a different population or context [57]. 

 (c) The challenge of integrating new technology into day-to-day clinical practice: Integrating AI 

technologies into everyday clinical practice involves a number of challenges. Firstly, sufficiently 

powerful IT infrastructures are needed to run these models. Secondly, medical staff need to be trained 

in their use, which can come up against a certain resistance to change. In these cases, the explicability 

of the models plays a key role in instilling confidence and facilitating their adoption. In addition, it is 

crucial to develop user-friendly interfaces, integrating these models into practical tools for medical staff. 

Finally, regulatory and ethical aspects, such as data confidentiality and patient safety, must be 

considered to ensure the safe and responsible deployment of technologies in the clinical environment. 

Articles cited in this review evaluate the performance of the AI models with specificity/sensitivity 

approaches and not with concrete data from clinical routine experiment nor or case studies on brain 

tumor treatment efficacy. A study has developed an AI model for diagnosing breast cancer and 

determined whether it could be useful to radiologists [58]. The study showed that AI had better results 

than radiologists (91% vs 59%). The integration of artificial intelligence into clinical practice is raising 

new challenges while offering considerable opportunities. It is helping to improve the accuracy of 

diagnoses, optimize administrative tasks and personalize treatment plans. What's more, AI allows 

healthcare staff to spend more time with patients, enhancing the quality of care and the human 

relationship [59]. For example, the authors showed that a BM segmentation system based on DL can be 

optimally applied to improve the efficiency of BM delineation in clinical practice [60]. Another study 

has developed deep learning models for the purpose of proposing an alternative solution for patient-

specific quality assurance that would make treatment machines more available to patients and thus 

enable more patients to be treated [61]. 

In summary, while significant progress has been made in early characterization and prediction of 

treatment efficacy in GBM and BM using imaging biomarkers, radiomics, and AI, further research is 

needed to address current limitations and explore new avenues. Integrating functional imaging 



   

 

17 
 

biomarkers, updating AI models to reflect recent architecture, and investigating new treatment 

modalities are key areas for future development. 
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Table 1A – Biomarkers imaging-based solutions for the early characterization of treatment efficacy  

CBV : cerebral blood volume, Cho : choline, CRT : radiotherapy and temozolomide, CT : computed tomography , DCE : dynamic contrast-enhanced, [18F]-

FDG : [18F]-fluorodeoxyglucose , [18F]-FLT : [18F]-fluoro-thymidine, GBM : glioblastoma , Lac : lactate, MRI : magnetic resonance imaging ,MRS : 

magnetic resonance spectroscopy, NAA : N-acetylaspartate, PET : positron emission tomography, [18F]- RGD : [18F]-AlF-NOTA-PRGD2  

 

Studies  Cohorts (n) Tumor type Treatment Imaging 

modality 

Imaging schedule Outcome 

prediction 

Results Reference 

Clinical 20 patients GBM Anti-angiogenic (Bevacizumab) 

plus conventional radiotherapy 

and chemotherapy 

(Temozolomide) (CRT) 

 

Adjuvant chemotherapy 

(Temozolomide) plus anti-

angiogenic (Bevacizumab) 

18F-RGD PET/CT 
 
DCE-MRI 

 

Before CRT 

Before anti-

angiogenic 

Seven weeks after 

anti-angiogenic 

Treatment 

efficacy 

Prediction of response to 

treatment after three 

weeks 

[14] 

Clinical 33 patients Recurrent 

GBM 

Anti-angiogenic (Bevacizumab) 

monotherapy or combination 

therapy 

MRI/MRS 

(NAA/Cho and 

Lac/NAA) 

1 day, 2-4-8-16 weeks 

after treatment 

Treatment 

efficacy 

Prediction of treatment 

failure to therapy one day 

after treatment 

[15] 

Preclinical 25 rats and 

29 rats 

GBM  

 

(U87 and 

U251: 

human cell 

line) 

Chemotherapy (Temozolomide), 

anti-angiogenic (Bevacizumab) or 

both 

Anatomical MRI 

Diffusion MRI 

CBV MRI 

[18F]-[FLT] PET 

[18F]-FDG PET 

Five, 10 or 12 days 

after treatment 

Treatment 

efficacy 

[18F]-FLT was more 

predictive: 3 days after 

initiation treatment 

[17]  

Preclinical 49 rats Recurrent 

GBM  

 

(Human 

U251 cell 

line) 

Chemotherapy (Temozolomide), 

anti-angiogenic (Bevacizumab) or 

both 

Anatomical MRI 

Diffusion MRI 

CBV MRI 

[18F]-[FLT] PET 

[18F]-FDG PET 

Three, 10 and 17 days 

after treatment 

Treatment 

efficacy 

[18F]-FLT was more 

predictive: 3 days after 

the end of treatment 

[18]  

Clinical 30 patients Recurrent 

malignant 

glioma 

Chemotherapy (Temozolomide) 

and anti-angiogenic 

(Bevacizumab)  

Anatomical MRI 

[18F]-FLT PET 

MRI: 6 weeks after 

treatments 

 

PET: 1 to 5 days and 

at 2 and 6 weeks after 

treatments 

Treatment 

efficacy 

[18F]-FLT can be used to 

determine the treatment 

efficacy two weeks after 

treatments 

[19]  
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Table 1B - Radiomic-based solutions for treatment efficacy prediction 

 

AB : adaptive boosting, Acc : accuracy, AUC : area under the ROC curve, BM : brain metastases, GBM : glioblastoma, GKRS : gamma knife radiosurgery, 

GNB : gaussian naïve bayesian, kNN : k-nearest neighbors, LR : logistic regression, MLP : multilayer perceptron, MRI : magnetic resonance imaging, RF : 

random forest, Sens : sensitive, Spe : specificity, SRS : stereotactic radiosurgery, SVM : support vector machine 

 

 

 

Studies Cohorts (n) Tumor type Treatment(s) Imaging 

modality 

Features 

numbers 

Models Outcome 

prediction 

Results Reference 

Clinical 237 patients BM Gamma Knife 

radiosurgery (GKRS) 

MRI Clinical: 5 

Radiomic: 4 

SVM Overall survival  Radiomics and clinical 

features combination 

(AUC = 0.82, Acc = 

0.80, Sens = 0.77, Spe = 

0.81) 

[24] 

Clinical 256 patients BM GKRS MRI Clinical: 5 

Radiomics: 5 

SVM Local tumor 

control 

Radiomics and clinical 

features combination 

(AUC = 0.95, Acc = 

0.89, Sens = 0.87, Spe = 

0.91) 

[24] 

Clinical 125 patients GBM Radiotherapy and 

concomitant 

chemotherapy 

(Temozolomide) 

MRI Clinical: 6  

Radiomics: 21 

RF, SVM, 

LR 

Survival 

stratification 

Radiomics and clinical 

features combination 

(AUC = 0.92) 

[25] 

Clinical 76 patients GBM Chemoradiotherapy MRI Clinical: 2 

Radiomics: 6 

Naïve Bayes Distinction in early 

true progression 

between 

pseudoprogression 

Radiomics and clinical 

features combination 

(AUC = 0.80, Acc = 

0.737, Sens = 0.78, Spe 

= 0.67) 

[26] 

Clinical 337 patients BM SRS MRI Clinical: 4 

Radiomics: 223 

GNB, kNN, 

RF, AB, 

SVM, MLP 

Treatment response Best classifier: SVM 

Radiomics and clinical 

features combination 

(AUC = 0.95)  

[27] 

Clinical 87 patients BM Stereotactic 

radiosurgery (SRS) 

MRI Clinical: 3 
Radiomics: 9 

RF Local tumor 

control  

Radiomics and clinical 

features combination 

(AUC = 0.79) 

[28] 
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Table 1C - AI-based solutions for treatment efficacy prediction 

Acc : accuracy, AI : artificial intelligence, AUC : area under the ROC curve, BM : brain metastases, CCP : concordance correlation coefficients, CNN : 

convolutional neural network, GBM : glioblastoma, LR : logistic regression, LSTM : long short term memory, MLP : multilayer perceptron, MRI : magnetic 

resonance imaging, MRS : magnetic resonance spectroscopy, RANO : response assessment in neuro-oncology,  RF : random forest, Sens : sensitive, Spe : 

specificity, SRS : stereotactic radiosurgery, SVM : support vector machine, XGBoost : extreme gradient boosting 

 

 

Figure 1 - The challenge of early characterisation in predicting therapeutic efficacy in glioblastoma and brain metastases 

Table.1: Biomarkers imaging-based solutions for the early characterization of treatment efficacy (A), Radiomic-based solutions for treatment 

efficacy prediction (B) and AI-based solutions for treatment efficacy prediction (C) 

Studies Cohorts (n) Tumor 

localization 

Treatment Imaging 

modality 

Models Outcome prediction Results Reference 

Clinical 

 

124 patients BM Stereotactic radiation 

therapy (SRT) 

MRI MLP/Clinical features 

CNN + Seq2Seq / 

Transformers / LSTM 

CNN + Seq2Seq / 

Transformers / LSTM + 

clinical features 

 

Local tumor control  CNN + LSTM + 

clinical features (AUC 

= 0.86, Acc = 0.83, 

Sens = 0.77, Spe = 

0.87) 

[36] 

Clinical  30 patients Gliomas (15 

GBM) 

/ MRI HD-GLIO-XNAT 

(https://github.com/NeuroAI-

HD/HD-GLIO-XNAT) 

Evaluate whether AI-

assisted decision 

support provides a 

more reproducible 

and standardized 

assessment of 

response to treatment 

compared to manual 

measurements using 

RANO criteria  

Lower grade-gliomas 

(CCP = 0.77 for RANO 

and 0.91 with AI)  

[37] 

Clinical 133 patients GBM / MRI ANN with clinical features Survival classification Cross validation: Acc = 

0.91 

[38] 

Preclinical 28 mice GL261 Chemotherapy 

(Temozolomide) 

MRI/MRS 1D-CNN, LR, SVM, RF, 

XGBoost 

Therapy response 

assesment 

1D-CNN (Acc = 

0.9975, Sens = 0.99, 

Spe = 0.99) 

[39] 


