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A B S T R A C T

Rationale and objectives: The RANO-BM criteria, which employ a one-dimensional measurement of the largest 
diameter, are imperfect due to the fact that the lesion volume is neither isotropic nor homogeneous. Further-
more, this approach is inherently time-consuming. Consequently, in clinical practice, monitoring patients in 
clinical trials in compliance with the RANO-BM criteria is rarely achieved. The objective of this study was to 
develop and validate an AI solution capable of delineating brain metastases (BM) on MRI to easily obtain, using 
an in-house solution, RANO-BM criteria as well as BM volume in a routine clinical setting.
Materials (patients) and methods: A total of 27,456 post-Gadolinium-T1 MRI from 132 patients with BM were 
employed in this study. A deep learning (DL) model was constructed using the PyTorch and PyTorch Lightning 
frameworks, and the UNETR transfer learning method was employed to segment BM from MRI.
Results: A visual analysis of the AI model results demonstrates confident delineation of the BM lesions. The model 
shows 100 % accuracy in predicting RANO-BM criteria in comparison to that of an expert medical doctor. There 
was a high degree of overlap between the AI and the doctor’s segmentation, with a mean DICE score of 0.77. The 
diameter and volume of the BM lesions were found to be concordant between the AI and the reference seg-
mentation. The user interface developed in this study can readily provide RANO-BM criteria following AI BM 
segmentation.
Conclusion: The in-house deep learning solution is accessible to everyone without expertise in AI and offers 
effective BM segmentation and substantial time savings.

1. Introduction

Brain metastases are a common occurrence in patients with cancer, 
affecting between 20 and 40 % of individuals. They represent the most 
prevalent form of brain malignancy (Achrol et al., 2019). In some cases, 
these metastases demonstrate responsiveness to local treatments, 
including stereotactic radiotherapy, which has been shown to have an 

excellent local control rate (exceeding 80 % local control after two 
years) (Ene et al., 2024).

The advent of novel systemic therapies has led to a notable 
improvement in the prognosis of patients with brain metastases. 
Following the administration of an initial localised treatment, patients 
may be monitored for several years, with the potential for further 
localised treatment to be beneficial. The preparation of stereotactic 
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brain radiotherapy treatments and the subsequent monitoring of pa-
tients following treatment represent a significant and growing aspect of 
the work of radiotherapists. The establishment of consensus criteria for 
patient follow-up represents a significant challenge, particularly in 
terms of standardising practice across different centres and facilitating 
comparisons between clinical trials. The RANO BM (Response Assess-
ment in Neuro-Oncology Brain Metastases) criteria, introduced in 2015 
by the international and multidisciplinary RANO BM working group, 
represent the current gold standard for the assessment of brain metas-
tases post-treatment response (Lin et al., 2015).

In addition to the clinical criteria and a global vision of the disease at 
the cerebral level, the RANO BM criteria provide the clinician with the 
capacity to undertake one-dimensional measurement of the largest 
diameter of so-called target brain metastases. The aforementioned target 
brain metastases are measured on a post-Gadolinium T1 sequence. The 
efficacy of treatment is determined based on the observed change in 
lesion size. This ranges from a 20 % increase, indicative of disease 
progression, to complete response, characterised by lesion disappear-
ance. The measurement of the largest diameter of all target lesions is a 
time-consuming process, particularly in the context of multiple MRI 
follow-ups for different stereotaxic radiotherapy treatments. Conse-
quently, monitoring patients in clinical trials can be a significant burden 
for radiologists. In clinical practice, compliance with the RANO BM 
criteria is often challenging to achieve.

Furthermore, brain metastases are a complex entity with significant 
heterogeneity, including areas of necrosis, areas of progression, pseudo- 
progression, and other characteristics. The evolving environment of 
brain metastases is heterogeneous, with various interfaces (meninges, 
bones, ventricles, etc.) present. Consequently, the growth of a metastasis 
is not necessarily isotropic (Hessen et al., 2017; Ohtakara et al., 2023).

A recent retrospective study indicates that one-dimensional mea-
surement is imperfect and may not be as effective in detecting pro-
gressions as three-dimensional measurement, particularly volumetric 
measurement (Ocaña-Tienda et al., 2024).

In light of these considerations, the potential benefits of integrating 
an automatic contouring tool into the clinical workflow, both before and 
after treatment, are twofold.

Firstly, it could facilitate the preparation of stereotactic radiotherapy 
treatments by the radiotherapist, assisting in the identification of me-
tastases and reducing delineation time.

Secondly, it could enable the radiologist to monitor treated patients 
rapidly, accessing numerous metrics, some of which have already been 
validated by RANO BM, and others which show promise and may offer 
more efficient solutions.

Artificial intelligence (AI) algorithms for the automatic contouring of 
brain metastases are currently being developed (Cho et al., 2021a; Xue 
et al., 2020; Chartrand et al., 2022; Dikici et al., 2020; Li et al., 2023). 
Notably, UNETR type models have achieved the best results for brain 
metastases detection and segmentation (Pang et al., 2024; Shaker et al., 
2022). However, there are still very few trials evaluating the use of these 
models for patient monitoring (Cho et al., 2021b; Kickingereder et al., 
2019; Hsu et al., 2023) and concrete solutions which can be used for 
clinical routine are still awaited.

The objective of this study was to develop an algorithm that can 
accurately detect and segment brain metastases and be readily inte-
grated into the clinical workflows of radiologists and radiotherapists.

2. Materials and methods

2.1. Patients

The present retrospective study has been approved by the local 
institutional review board. A total of 27,456 2D post-Gadolinium (Gd) 
T1 MRI scans from 132 patients with a total of 386 brain metastases who 
were referred to our oncology centre between January 2019 and March 
2023 were included in the study. This study was conducted in 

accordance with the guidelines set forth by MR-004, a national French 
institution that defines health research conduct and the Declaration of 
Helsinki. All patients provided informed consent for the use of their 
data. The characteristics of the study population are outlined in Table 1.

2.2. Magnetic resonance imaging (MRI) acquisition

MRI was performed on an AREA SIEMENS 1.5 Tesla magnet using a 
brain dedicated 16 channels coil with the patient in a supine position. 
Prior to the examination, patients were injected with 0.2 mL/kg of 
DOTAREM (500µmol/ml). After a shimming process and scout imaging 
scan, tumor gadolinium enhancement was detected with a post-Gd T1 
brain sequence with the following parameters: TR/TEeff=2070/3.15 
msec; Angle=15◦; NEX=1; 208 contiguous slices; 3D resolution=0.5 ×
0.5 × 1 mm; acquisition matrix = 512 × 512 pixels and acquisition 
time=4min48). A total number of 27,456 2D MR images were acquired 
from the 132 patients.

2.3. Deep learning algorithms

2.3.1. Deep learning (DL)
The deep learning model consisted of a fine-tuned UNETR architec-

ture (Hatamizadeh et al., 2021). This model incorporates the strengths 
of both the UNet and Vision Transformer models, addressing the chal-
lenge of segmenting multiple regions of interest within an image. The 
UNETR architecture output was modified removing the last 14 output in 
the last layer by two outputs for the purpose of distinguishing between 
lesion and healthy tissue.

UNETR was pre-trained in the segmentation task for brain tumor on a 
set of 484 multi-modal multi-site MRI data with three class (1: tumor, 2: 
hemorrhagic part of the tumor, 3: eudeme). Architecture was described 
in “UNETR: Transformers for 3D Medical Image Segmentation by Ali 
Hatamizadeh et al.” Last layer was 1 × 1 × 1 convolutional layer that has 
been modified for binary segmentation called UnetOutBlock. It is the 
only layer not freeze, other weights are saves from the pretrain model of 
structure classification of UNETR. The MLP was the one of MONAI in the 
Vision Transformer. We applied the following layers: Linear layer 1, 
Dropout Layer 1, Linear layer 2 and Dropout layer 2. The convolution 
head was composed of a Convolution 3D, a Prelu, a Dropout and a Layer 
norm. More information can be found here: https://docs.monai.io/en/ 
1.0.1/_modules/monai/networks/blocks/mlp.html.

UNETR initial model before fine tuning was obtained using MONAI 
(Cardoso et al., 2022). Fine-tuning technic used the methodology of 
Yosinski and collaborators (Yosinski et al., 2014). During the training 
process, only the weights of the final layer were removed and trained, 
while the weights of the preceding layers were maintained at their 
original values. A deep learning model was developed from 27,456 
unique post-Gd T1 brain images obtained from 132 patient acquisitions 
with a total of 386 BM. These images were split into three datasets: a 
training set comprising 19,219 images (70 % of the total), a test set 
comprising 2746 images (10 % of the total), and a validation set 

Table 1 
Description of the patient cohort.

Included patients (N) 132 Number

Sex 50 % Female %
Age (Y) 63.4 Mean
Total number of BM 386 Number
Number of BM per patient 2.93 ± 2.32 (min=1; max=13) 
Lesion origin  
- From Lung cancer 83 (61 %) Number (%)
- From Melanoma cancer 28 (20 %) 
- From Breast cancer 8 (6 %) 
- From Kidney cancer 7 (5 %) 
- From Colorectal cancer 3 (4 %) 
- From Head and Neck cancer 2 (3 %) 
- From Digestive cancer 1 (1 %) 
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comprising 5491 images (20 % of the total). To avoid bias, we carefully 
check that each patient cannot be part of the training and validation and 
test dataset, all slices of each patient was in the same dataset. The input 
data comprised brain MRI images and the delineation of the tumour 
lesion, designated as GTV (Gross Tumour Volume). The GTV region of 
interest was initially transformed into a mask image. Prior to training, 
specific MRI images underwent normalisation, with bias field correction 
employed (Masoudi et al., 2021). Data augmentation was conducted 
through the application of flips along the sagittal axis and 180◦ rota-
tions. To reduce the computational time required, intensity normal-
isation was performed between 0 and 255, and the image background 
was removed. The deep learning model was developed using PyTorch 
Lightning. The loss function used in this study was the binary cross 
entropy, using the PyTorch function "binary_cross_entropy_with_logits". 
The Pydicom and dicompylercore libraries were used to manage the MRI 
and RTSTRUCT DICOM files (Mason, 2011). Dice index was used to 
evaluate the performance of the model during the training process. The 
AI model was trained on two NVIDA A6000 GPU 48Go. All the code used 
to develop and train the model is available at: https://github.com/ 
AurelienCD/BrainMetaSegmentatorUI-Back (accessed on 01 November 
2024).

2.3.2. Image analysis and processing
Quantitative analysis: In accordance with the established workflow 

within the radiotherapy department, another radiation oncologist 
delineated a three-dimensional volume of interest (VOI) encompassing 
31 lesions utilising the Raystation™ solution (V11.B) for ten patients 
(not for the purpose of AI model training). Subsequently, an expert ra-
diation oncologist evaluated the RANO-BM criteria on the reference and 
AI brain metastases segmentation. The concordance of the RANO-BM 
criteria between AI and reference was then evaluated. To evaluate the 
ability of the AI model to detect BM, F1 score were evaluated. Several 
quantitative metrics, which are commonly used in the literature to 
evaluate the spatial overlap, were employed (Taha and Hanbury, 2015), 
were used to compare the VOI delimited by the radiation oncologist and 
the one created by the AI models: 

• Dice Similarity Coefficient (DSC): Measures the overlap between 
two volumes, providing a statistical validation of segmentation 
precision;

• Mean Surface Distance (MSD): Calculates the average Euclidean 
distance between the surfaces of two volumes, offering insights into 
the contour accuracy;

• Volume Overlap Error (VOE): Represents the proportion of the 
total volume that is over-segmented or under-segmented relative to 
the reference, complementing the Dice coefficient by providing error 
rates;

• Hausdorff Distance: Evaluates the maximum distance of the dataset 
boundary points between the predicted and reference segmentations, 
highlighting the worst-case scenario of boundary prediction;

• Jaccard Index: Quantifies the similarity and diversity between 
sample sets, indicating the proportionate size of the intersection 
divided by the union of the sample sets;

• Variation of Information (VI): Measures the amount of information 
lost and gained in the segmentation process, reflecting the 
complexity and precision of the information captured by the 
segmentation;

• Cosine Similarity: Assesses the cosine angle between the multidi-
mensional representations of the segmented volumes, useful for 
understanding the orientation and agreement in the segmented 
shapes.

To compare reference and AI brain metastases ROI, first order in-
tensity evaluation was performed using mean, standard deviation, min, 
max. Subsequently, the specificity and sensitivity were evaluated in 
order to ensure the accuracy of the RANO-BM AI prediction in 

comparison to the radiation oncologist segmentation.

2.4. Statistical analyses

All data are expressed as mean ± SD. The correlation between the 
first-order intensity values derived from the reference and those ob-
tained from the AI-based brain metastases segmentation was analysed 
with the concordance correlation coefficient (CCC) (Lin, 1989). A CCC 
value of 1 indicates a perfect positive or negative correlation, whereas a 
value of 0 indicates no correlation. Features with a minimum CCC of 
0.85 were deemed to be statistically reproducible and concordant, and 
the values were considered to be stable (Peerlings et al., 2019). All 
statistical analyses were performed using Python (Anaconda Software 
Distribution, 2020) and SciPy library. Data visualization used Seaborn 
library (Waskom, 2021; Hunter, 2007). All Python code used in the 
analysis is available at https://github.com/AurelienCD/MetIA and 
“Quantitative analysis.ipynb” (accessed on 01 November 2024).

3. Results

3.1. Deep learning brain metastases segmentation model

The optimisation process resulted in an AI model constructed with 
binary accuracy validation metrics over 1079 epochs. The training 
process, which spanned three days, yielded 93 million parameters. As 
illustrated in Fig. 1, the training and validation loss functions, which 
represent the model’s error rate throughout the training phase, indicate 
that epoch 1079 was the most optimal.

3.2. Visual analysis

As presented in Fig. 2, the AI model is able to delineate both large BM 
lesions (black arrows) and small lesions of 4 mm diameter (white ar-
rows). The delineation closely follows the hyperintensity seen on T1 
gadolinium enhancement.

3.3. RANO-BM concordance

As evaluated by the expert physician in the reference segmentation, 
the RANO-BM criteria evaluation were as follow: two complete re-
sponses, two partial responses, three stable diseases and two partial 
diseases. The RANO-BM obtained from AI segmented lesion were 100 % 
agreement with the above RANO-BM criteria evaluation.

3.4. Quantitative analysis

The spatial overlap of the reference and AI brain metastases seg-
mentation was first analyzed using several metrics. As presented in 
Table 2, the overlap between the AI and the physician’s segmentation 
volumes with DICE coefficient was 0.77 and the Euclidean distance 
between the two volumes was 4.13, representing a reliable overlap.

The diameters and volumes obtained from the AI segmentation were 
then compared with the reference. As shown in Fig. 3 for each brain 
metastasis, very few differences were observed between the diameters 
(Fig. 3A) and volumes (Fig. 3B) obtained from the AI segmentation 
compared to the reference segmentation. Volume and diameter differ-
ences from AI and radiotherapist segmentation were 0.15 ± 0.18 mm3 

and 1.38 ± 1.19 mm, respectively. The AI model have shown good BM 
detectability with F1 score of 95.5 %.

To go deeper, the stability of volume, diameter and first order signal 
intensity values between AI and reference segmentations were evaluated 
using the Concordance Correlation Coefficient (CCC). As presented in 
Fig. 4, the CCC values were: 0.93, 0.97, 0.76, 0.98, 0.99 and 0.93 for 
diameter, volume, minimal intensity, mean intensity, maximum in-
tensity and standard deviation intensity, respectively. Only, the mini-
mum intensity variable was below the 0.8 threshold, showing a 
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Fig. 1. Deep learning model performance during the training process through the epochs. (A) Training loss and (B) Validation loss functions during the 
training process.

Fig. 2. Three representative MRI with brain metastases segmented by the deep learning model. Large (black arrows) as well as small lesions (white arrows) are 
detected by the algorithm.
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discordance between AI and reference segmentation minimum intensity.

3.5. Application of the solution in clinical practice

The aim of this study was to develop an approach that works well but 
can also be easily implemented in clinical practice. To achieve this, a 
user interface was developed using ORTHANC and Open Health Imaging 
Foundation (OHIF) (Ziegler et al., 2020) solutions that can be used in a 
clinical setting. This user interface interacts with a back-end API to 
retrieve medical data in DICOM format, start the deep learning model, 

and visualize the results. Further details on the back-end and front-end 
parts of the user interface as well as a tutorial can be found at https:// 
github.com/AurelienCD/BrainMetaSegmentatorUI-Back (accessed on 1 
November 2024) and https://github.com/AurelienCD/BrainMetaSeg 
mentatorUI-Front (accessed on 1 November 2024). The interface re-
quires as input, a brain MRI and after an average of 30 s in average of 
processing (with standard RTX 4080 GPU), provide AI brain metastases 
segmentation in RTSTRUCT format which can be easily uploaded and 
used in conventional Treatment Planning Software (Raystation™ solu-
tion (V11.B) for this study). The solution can also be used to view the AI 

Table 2 
Quantitative analysis of reference and AI predicted region of interest similarity.

DICE coefficient 
(SD)

Mean surface distance 
(SD)

Volume overlap error 
(SD)

Haussdorf distance 
(SD)

Jaccard index 
(SD)

Variation of information 
(SD)

Cosine Similarity 
(SD)

0.77 (0.15) 4.13 (7.32) 0.43 (0.24) 32.67 (60.05) 0.63 (0.19) 0.001 (0.0004) 0.77 (0.13)

Fig. 3. Impact of deep learning segmentation on brain metastases diameters (A) and volumes (B) evaluation.
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segmentation result and track the diameter and volume of brain lesions 
for RANO-BM purposes (Fig. 5A and B). The deep learning model and 
user interface codes are freely available upon reasonable request. 
However, please note that the performance of the model has only been 
optimized for our data and needs to be fully validated before external 
use.

4. Discussion

Brain metastases occur in 20–40 % of patients with cancer and 
represent the most common manifestation of brain malignancies (Achrol 
et al., 2019). Due to this high number of lesions and to the human 
resource difficulties in the medical field, patient follow-up during clin-
ical routine or for clinical trials is often difficult to underwent. For these 
reasons, compliance with the RANO BM criteria is rarely achieved in 
clinical practice. A highly robust and easy-to-implemented solution that 
could automatically and quickly extract BM lesion’s diameter and vol-
ume as well as RANO BM criteria could be an interesting insight for 
patient therapeutic management.

In this study we have developed and evaluated a deep learning model 
using the transfer learning method of UNETR to automatically extract 
BM lesion segmentation. The model was trained using >27,000 unique 
post-Gd T1 brain images acquired from 132 patient’s acquisitions. The 
number of patients in our study was similar to several previous studies 

Fig. 4. Stability of the first order statistics between AI and reference 
segmented ROI.

Fig. 5. Example of RANO-BM with diameter and volume follow-up using deep learning segmentation results with the integration of the model within OHIF solution. 
(A) Example of diameter measurement and (B) patient statistics follow-up.
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(Dikici et al., 2020; Luo et al., 2024; Huang et al., 2022), but lower 
compared to few others (Luo et al., 2024). Furthermore, the quality of 
the data of our training and validation set were all reviewed by a 
radiotherapist to deleted incomplete data or complex cases that could 
lead to confusion due to patient movements, presence of artifacts…

Our model showed close BM segmentation compared to experienced 
physician segmentation with a mean DICE score of 0.77. In the litera-
ture, DICE scores remain below 0.82 (Cho et al., 2021a, 2021b; Xue 
et al., 2020; Hsu et al., 2023) and our results are consistent with the 
DeepMedic approaches (Huang et al., 2022). However, in a recent study 
conducted by Luo and co-workers, the DICE score was of 0.91 possibly 
due to the size of the cohorts which were 312 and 156 patients for 
training and validation respectively (Luo et al., 2024).

Lesion diameter and volume are concordant between AI and refer-
ence segmentation. More specifically, Supplementary Fig. 1 shows the 
correlation between AI and reference lesion diameter and volume. The 
pearson correlation shows a significant correlation with R² values of 
0.92 (p < 0.001) and 0.98 (p < 0.001) for lesion diameter and volume 
respectively.

Here we can confirm that, for lesions larger than 1 cm in diameter, AI 
and reference values were highly correlated. However, below this 
threshold of 1 cm, which is exactly threshold imposed by the RECIST 
criteria, more important heterogeneity was observed. This last point 
highlights the interest of an AI solution for the assessment of very small 
lesions below 1 cm, which are currently not assessed by radiologists.

It is interesting to note that the mean volume and diameter as well as 
the minimum intensity are slightly smaller in the AI segmentation (not 
significantly discordant for BM diameter and volume but significantly 
discordant for minimum intensity). This probably highlights the fact 
that the model is trained to detect the hyperintensity signal revealed by 
the gadolinium injection in order to delimitate the BM lesion. The model 
is potentially stricter on the tumor boundary and does not include the 
area without T1 enhancement in the lesion area which may be done by 
an experienced physician as they know that tumor cells invade the 
surrounding healthy tissue close to the area of T1 enhancement. As 
shown in Supplementary Fig. 2, AI and radiotherapist segmentation can 
be completely concordant (A), but in some cases the AI segmentation 
seems to follow the tumor boundary more precisely than the radio-
therapist one (B), and in some other cases the AI segmentation was 
smaller than the reference segmentation. It appeared that applying 
smoothing could be more realistic if the invasion process of brain me-
tastases is known.

BM are not always well delineated with homogeneous high signal 
intensity. Supplementary Fig. 3 shows the example of AI segmentation of 
BM with central necrosis (Supplementary figure 3A), diffuse BM (Sup-
plementary figure 3B) and BM close to an area of high signal intensity 
without being a tumor (Supplementary figure 3C).

Our patient dataset is representative of the patient population with 
BM, as lung cancer is the most common primary source of BM in the 
training dataset. This could introduce a bias and not allow good delin-
eation in other primary histologies (from breast, renal or melanoma 
primary cancers). In our study, no difference in performance was 
observed with respect to the different primary histologies, as shown in 
the Supplementary Fig. 4.

Despite these slight non-significant and significant differences, the 
RANO-BM criteria obtained from the AI segmentation are 100% 
concordant with those obtained from the physician segmentation. Pa-
tient monitoring with RANO-BM follow-up, which is rarely addressed in 
the literature, was an important aspect of our study. We found only one 
study that investigated the concordance of RANO-BM criteria obtained 
by an AI model with those defined by radiologists (Cho et al., 2021b). 
The kappa coefficients calculated in this study were equal to 0.52 based 
on largest diameters and 0.68 based on volumes. Obtaining a radiolog-
ical response according to the RANO BM criteria is a challenge that 
resonates with the daily concerns of radiologists and radiotherapists.

In this study, we have developed an easy-to-use interface to exploit 

AI BM segmentation. To date, no industrial solutions have been vali-
dated and proposed for the clinical routine. Raystation and Ther-
aPanacea are examples of two treatment planning software that are 
developed highly innovative algorithms to optimize therapeutic man-
agement in the radiotherapy department. Both are able, in a clinical 
routine setting, to delineate organs at risk in order to accelerate radio-
therapy planning (Bondiau et al., 2022; Stathakis et al., 2022; Mekki 
et al., 2024). However, to date, there is no fully validated and routinely 
proposed AI solution for the delineation of tumors as BM.

From the perspective of our study, it would be interesting to fine- 
tune very recent large models developed for medical purposes such as 
UNETR++ and nnFormer to improve performance (Shaker et al., 2022; 
Zhou et al., 2021), which have not yet been used for BM segmentation.

The reproducibility and robustness of the AI models in different 
clinical settings and at different centers is a key factor for their imple-
mentation into clinical practice. The use of a federated learning 
approach can lead to the development of a global model based on data 
from different centers (Pati et al., 2022; Ahamed et al., 2023). The next 
step for this project would be to use federated learning with volunteer 
centers to improve our model and make it more relevant to other cen-
ters. Finally, supporting clinicians in monitoring their patients according 
to the RANO-BM criteria will facilitate inter-operator reproducibility 
and the standardisation of practice. This is in line with the objectives 
proposed by the international RANO-BM group. Indeed, the heteroge-
neity of follow-up is a major challenge in clinical trials on patients with 
brain metastases. This provides an opportunity to explore alternative 
approaches to assessing patient response and, subsequently, differenti-
ating radionecrosis from progression.

5. Conclusion

Together with experienced radiotherapists and radiologists, we have 
developed and validated a fully automated deep learning solution 
capable of accurately delineating BM using RANO-BM criteria. Our in- 
house user interface solution, easily accessible to non-experts in AI, 
provides sufficient BM segmentation and significant time savings.

Data availability statement

The data presented in this study can be sent upon reasonable request. 
Python code used for this study are openly available at https://github. 
com/AurelienCD/MetIA.

CRediT authorship contribution statement

Loïse Dessoude: Validation, Investigation, Formal analysis, Data 
curation, Methodology, Conceptualization, Writing – review & editing, 
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