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Abstract

Purpose: In sleep medicine, assessing the evolution of a subject’s sleep often
involves the costly manual scoring of electroencephalographic (EEG) signals.
In recent years, a number of Deep Learning approaches have been proposed
to automate this process, mainly by extracting features from said signals.
However, despite some promising developments in related problems, such as
Brain-Computer Interfaces, analyses of the covariances between brain regions
remain underutilized in sleep stage scoring.
Methods: Expanding upon our previous work, we investigate the capabilities of
SPDTransNet, a Transformer-derived network designed to classify sleep stages
from EEG data through timeseries of covariance matrices. Furthermore, we
present a novel way of integrating learned signal-wise features into said matrices
without sacrificing their Symmetric Definite Positive (SPD) nature.
Results: Through comparison with other State-of-the-Art models within a
methodology optimized for class-wise performance, we achieve a level of perfor-
mance at or beyond various State-of-the-Art models, both in single-dataset and
- particularly - multi-dataset experiments.
Conclusion: In this article, we prove the capabilities of our SPDTransNet model,
particularly its adaptability to multi-dataset tasks, within the context of EEG



sleep stage scoring - though it could easily be adapted to any classification task
involving timeseries of covariance matrices.
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1 Introduction

Covariance matrices have long been used to analyze groups of concurrent signals, with
applications ranging from financial analysis [1] to hand gesture recognition [2]. By
construction, they function as descriptors of the relationships between said signals,
but also exhibit exploitable mathematical properties, as they usually exist on the non-
Euclidean manifold of Symmetric Positive Definite (SPD) matrices [3]. For instance,
SPD matrices are commonly used in structural imagery through Diffusion Tensor
Imaging (DTI) [4], and in brain activity estimation tasks.

Said estimations are often done through the lens of functional connectivity, i.e.
the correlations of activity between brain regions [5]. By construction, correlation and
covariance matrices are well suited to such tasks, and have been derived from functional
MRI (fMRI) imagery [6] and electroencephalographic (EEG) signals1. EEG-derived
connectivity estimations, in particular, are widely used in the field of Brain-Computer
Interfaces (BCI), where they are analyzed through geometry-preserving tools [7].

EEG signals are also utilized in sleep medicine as part of the polysomnography
(PSG) exam, where they are used to determine the evolution of a subject’s sleep
over time in order to diagnose sleep disorders. This has traditionally been a time-
consuming process, as it has to be done manually by experts. in recent years, a number
of approaches have been proposed to automate said process (Section 2.1). However,
even though functional connectivity has been shown to be indicative of a subject’s
sleep stage [8], most of these focus on analyzing individual signal properties, rather
than the interactions between signals. Furthermore, SPD analysis seems largely absent
from discussions regarding EEG sleep staging, despite the similarities between this
problem and BCI.

In response to this under-utilization of functional connectivity for sleep analysis, we
previously developed an approach to the automatic classification of sleep stages from
EEG data, predominantly through the analysis of EEG-derived covariance matrices [9].
This culminated in SPDTransNet [10], a Transformer-based Deep Learning model
adapted to analyze sequences of SPD matrices, most notably through SP-MHA, a
structure-preserving multihead attention mechanism.

1Electrical signals acquired from electrodes located around the brain, often non-invasively.
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Table 1: Frequency bands inspired by the literature [11]
Delta Theta Alpha Betalow Betahigh Gamma

Hz [0.5, 4[ [4, 8[ [8, 12[ [12, 22[ [22, 30[ [30, 45[

In this paper, we further analyze the capabilities of SPDTransNet, and introduce a
variant that allows for the inclusion of additional EEG-derived learned features within
our input matrices. We conduct a thorough examination of our model’s capabilities,
including its ability to perform in a multi-dataset environment, similarly to what might
be encountered in clinical use. Finally, we compare SPDTransNet with various State-
of-the-Art (SOA) approaches, showcasing our model’s performance and adaptability
in both single-dataset and multi-dataset experiments.

Our code is available on GitHub, in the MathieuSeraphim/SPDTransNet plus
repository.

2 Related Work

2.1 Automatic Sleep Stage Scoring

In order to determine the evolution of a subject’s sleep over time, the signals originat-
ing from a PSG exam are split into fixed-length windows, or “epochs”, with each epoch
being manually “scored” (i.e. labeled) with a corresponding sleep stage by experts.
This scoring is based on the properties of the considered signals in and around said
epoch, such as frequential components and distinct punctual events. A selection of
relevant frequency bands for PSG signal analysis can be found in Table 1.

The widespread scoring manual of the American Academy of Sleep Medicine
(AASM) [11] defines a total of 5 sleep stages - wakefulness, REM sleep, and three stages
of non-REM sleep, N1 to N3, along with the corresponding characteristics thereof,
and recommends epochs of thirty seconds of length.

Most State-of-the-Art automatic sleep staging models published in recent years
take sequences of PSG epochs as input, rather than individual epochs, to better
account for contextual information. Said models usually follow one of two classi-
fication schemes - sequence-to-element (sometimes called many-to-one) [12, 13], or
sequence-to-sequence (a.k.a. many-to-many) [14–18]. In a sequence-to-element classi-
fication scheme, the model outputs the classification of a single epoch in the input
sequence. By contrast, a sequence-to-sequence scheme outputs one classification per
input epoch, and utilize a combination strategy if the input sequences overlap each
other (meaning that a given epoch may be classified multiple times, each time in a
different position in the sequence). According to a recent survey by Phan et al. [19],
sequence-to-sequence approaches tend to yield greater global performance, though this
comes at the cost of methodological flexibility (Section 5).

Sequence-based classification can be done in a single step, using a Convolutional
Neural Networks (CNN) to extract signal features and deliver a classification [12, 20].
Most notably, both Perslev et al. [21, 22] and Jia et al. [23] treated this scoring as a
segmentation problem, and utilized architectures derived from U-Net[24]. By contrast,
Vilamala et al. [25] and Dequidt et al. [26] both took advantage of the aforementioned
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frequential characteristics of EEG signals, and analyzed EEG-derived time-frequency
spectra using a standard CNN architecture pretrained for image recognition.

However, as seen in the aforementioned survey, the most common approach is to
use a two-step architecture, by first extracting epoch-wise features before comparing
said features in a sequence-wise submodel. Here, CNNs are often utilized for epoch-
wise feature extraction, with architectures designed for sequence analysis being utilized
at the sequence level. The DeepSleepNet model by Supratak et al. [14], often used
as a benchmark, uses a Recurrent Neural Network (RNN), as does IITNet by Seo et
al. [13], which expands upon DeepSleepNet by extracting features from overlapping
subwindows rather than from entire epochs. Going one step further, Phan et al. [15,
17, 18] and Guillot et al. [27, 28] elected to use time-frequency spectra as input of
their RNN-based architectures, interpreting the epoch-wise spectra as timeseries of
frequency bins and analyzing them with RNNs.

With the advent of Transformer architectures [29], attention mechanisms have
proven to be particularly potent in the analysis of temporal sequences. As such, these
mechanisms have been applied to many fields, including sleep stage scoring. Some of
these approaches still utilize CNNs to extract intra-epoch features from 1D signals [30–
32], while others utilize them at both epoch-wise and sequence-wise levels [33], with
both SleepTransformer by Phan et al. [16] and MultiChannelSleepNet by Dai et al. [34]
taking time-frequency spectra as inputs.

With the exception of Dequidt et al [26] and the pre-DeepSleepNet CNN-only
approach of Chambon et al. [12], none of the above approaches utilize large numbers
of EEG electrodes, and therefore cannot take advantage of functional connectivity
(Section 1). This is unsurprising, as the aforementioned AASM ruleset emphasizes
the analysis through signal properties, and the most commonly used open sleep stage
scoring datasets - SleepEDF [35] and SHHS [36, 37] - only offer two EEG signals for
analysis. That is not to say that no approach has explicitly analyzed functional con-
nectivity between a large number of EEG signals. For instance, Jia et al. [38, 39] - and
later Einizade et al [40] - describe each epoch with a learned graph with electrodes as
nodes, before comparing them through a sequence-wise spatio-temporal graph neural
network (GNN). This approach arguably corresponds to an analysis through func-
tional connectivity, though this encoding is likely to disregard some spatial information
inherent to each electrode location, due to the permutation invariance property of
GNNs.

It is in this context that we designed the SPDTransNet model, analyzing sequences
of EEG epoch for the purpose of sleep stage scoring using a two-step Transformer
architecture, through the lens of functional connectivity estimated through covariance
matrices. As far as we are aware, ours is the only Machine Learning approach to utilize
covariance matrices for automatic sleep stage scoring.

2.2 The Symmetric Positive Definite Manifold

All covariance matrices are Symmetric Positive Semi-Definite (SPSD), i.e. with posi-
tive eigenvalues. Furthermore, when computed from linearly independent signals, they
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are fully Symmetric Positive Definite (SPD) - with strictly positive eigenvalues. Con-
versely, all SPD matrices can be understood as covariance matrices between linearly
independent signals.

The set of n× n SPD matrices, or SPD(n), is a non-Euclidean, Riemannian (i.e.
metric) manifold, meaning that applying regular Euclidean operations on such data
seldom preserve its geometric structure, introducing deformations. For instance, when
interpolating between SPD matrices of same determinant using Euclidean metrics, the
computed intermediate matrices tend to have a higher determinant - a phenomenon
known as the “swelling effect” [41].

To counteract this, multiple Riemannian metrics have been introduced, including
affine-invariant metrics [42]. As their name suggests, these offer interesting invariance
properties, but present computational difficulties. For instance, there is no closed-form
formula for the affine-invariant average of SPD matrices, and it has to be estimated.

Alternatively, LogEuclidean metrics offer similar results at a lower computational
cost, though they have been shown to be less isotropic [41]. They are defined using the
(bijective) matrix logarithm function logmat(·), which maps SPD(n) onto its tangent
space Sym(n), the vector space of symmetric matrices:

logmat(X) = U · log(Λ) · UT ∈ Sym(n) (1)

with X ∈ SPD(n), Λ and U respectively the diagonal matrix containing the eigen-
values of X and the corresponding eigenvectors, and log(Λ) the matrix resulting from
taking the element-wise natural logarithm of Λ’s diagonal elements.

More generally, this projection onto the tangent space can be parametered by a
center of projection P ∈ SPD(n):

logPmat(X) = P 1/2 · logmat(P
−1/2 ·X · P−1/2) · P 1/2 ∈ Sym(n) (2)

The tangent space at point P is in essence a local Euclidean approximation of the
non-Euclidean manifold. As such, logarithmically mapping elements of SPD(n) that
are distant from the chosen parameter P can introduce deformations in their mapped
images.

From this, LogEuclidean metrics are defined thusly:

δPLE(X,Y ) = ∥logmat(P
−1/2 ·X · P−1/2)− logmat(P

−1/2 · Y · P−1/2)∥∗ (3)

with X , Y and P in SPD(n), and ∥·∥∗ any Euclidean norm on Sym(n).
This formula can also be written by directly using Equation 2, with δPLE(X,Y ) =

∥logPmat(X) − logPmat(Y )∥+. Here, ∥S∥+ is equal to ∥P 1/2 · S · P 1/2∥∗ for all S in
Sym(n) [43, 44].

Like their affine-invariant counterparts, LogEuclidean metrics define geodesics on
the SPD manifold, and are immune to the swelling effect. And while their relative
anisotropy may affect the performance of any model utilizing them, this can be miti-
gated by choosing an appropriate center of projection P [44]. More importantly, they
provide significant computational advantages, such as a closed-form formula for a
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Riemannian weighted sum (and by extension, for a Riemannian average):

SumP
LE({X}, {w}) = expPmat

(

N
∑

i=1

wi log
P
mat(Xi)

)

(4)

with every Xi in {X} ⊂ SPD(n), every wi in {w} ⊂ R, and expPmat(·) the inverse of
logPmat(·).

2.3 Deep Learning on the SPD Manifold

Traditional Deep Learning techniques are often implicitly designed to process
Euclidean data, such as signals or images. This limitation has led to the development
of variants, to utilize these powerful techniques in a non-Euclidean setting. Applied
to the SPD manifold, Huang and Van Gool [45] developed Deep Learning layers anal-
ogous to those found in CNNs, most notably their SPD-to-SPD Bilinear Mapping
(BiMap) layer:

∀X ∈ SPD(n), BiMap(X,W ) = W ·X ·WT ∈ SPD(m) (5)

with W ∈ Rm×n a semi-orthogonal weights matrix.
A similar but distinct approach was taken by Chakraborty et al. [46], with SPD

matrices being elements of a feature map, rather than the feature map itself. In this
approach, elements of SPD(n) are analogous to scalars in a traditional CNN, and
convolution operations are replaced by weighted Riemannian averages (Section 2.2).

Though Riemannian methods have been utilized for a while in Brain-Computer
Interfaces [7, 47], those have traditionally been relatively simple, such as Riemannian
Minimal Distance to Mean (MDM) or SVM classifiers. Those approaches have at times
been enhanced through metric learning, applied to the center of projection and/or
Euclidean norm of the LogEuclidean metric [44, 48]. Nevertheless, Riemannian Deep
Learning approaches have recently started to emerge [49–52].

That is not to say that Deep Learning approaches are rare in BCI [47]. In particular,
as shown by a recent survey by Abibullaev et al. [53], a number of Transformer-based
approaches have been applied to BCI tasks, though as far as we are aware, none take
advantage of Riemannian geometry.

Beyond BCI, some Transformer-based models do make use of Riemannian geom-
etry. For instance, both Konstantinidis et al. [54] and Dong et al. [55] generate SPD
matrices as attention maps. By contrast, both He et al. [56] and Li et al. [57] adapted
their Transformer architecture to handle manifold-valued data, the manifolds in ques-
tion being 2D surfaces within 3D space. More generally, Kratsios et al. [58] developed
a theoretical framework for the use of Transformers to analyze data from a variety of
constrained sets, including Riemannian manifolds.

This said, we have yet to encounter a Transformer-based approach designed to
analyze SPD-valued data in a structure-preserving manner, even beyond the scope of
functional connectivity.
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3 Operations on SPD Matrices

Before their analysis by our model, our approach calls for a number of operations to
be applied to the original n×n SPD covariance matrices - to enrich them and improve
our model’s performance, without sacrificing their underlying SPD structure.

3.1 Matrix Augmentation

By construction, covariance matrices primarily encode comparative information, with
the only monosignal information being the variance over the signal segment. However,
as hinted at by the level of performance of single-signal approaches (Section 2.1), it
is undeniable that there is relevant information contained in the signals themselves,
information that may be lost when only considering covariances. Hence, the addition
of signal-wise information to our model’s input should be beneficial to said model’s
classification performance.

Let X ∈ SPD(n) be a covariance matrix encoding for the relationships between
n signal segments. Let A ∈ Rn×k be a matrix encoding k features for each of these
signal segments, and α ∈ R be a factor weighting for the importance of A in the final
matrix. These matrices may be combined to create the following SPD matrix:

X ′ = augα(X,A) =

⎛

⎜

⎜

⎝

X + α2 ·A · AT α ·A

α · AT Ik

⎞

⎟

⎟

⎠

∈ SPD(m) (6)

with m = n+ k.
We refer to this operation as an “augmentation”, with the resulting SPD matrixX ′

being the augmented matrix. The model parameter α (called “augmentation factor”
in this paper) controls the relative influence of A within the augmented matrix X ′.

A proof of the SPD nature of matrices augmented in this manner can be found in
Section 1 of the Supplementary Material.

3.2 Matrix Whitening

When analyzing signals originating from multiple recordings, each computed covari-
ance matrix may encode for information specific to its own recording. As such,
multi-subject datasets of biological signals, like the ones considered in this paper, can
be prone to significant differences from one subject to the next. These specificities
essentially act as noise, and are liable to lower the performance of our model.

To increase comparability between recordings, we eliminate these specificities
through the whitening operation [44]. Let X ′ ∈ SPD(m) be a matrix computed from
a given recording (thereafter referred to as a “recording matrix”), and G ∈ SPD(m)
the matrix estimating said recording’s specificities (i.e. the recording’s “whitening
matrix”). The whitened matrix M ∈ SPD(m) is obtained thusly:

M = whit(X ′, G) = G−1/2 ·X ′ ·G−1/2 (7)
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This whitening can be interpreted as a transport operation. For instance, com-
puting a LogEuclidean operation on unwhitened matrices using G as the center of
projection (Equation 3) is strictly equivalent to computing the same operation on
whitened matrices, but with the identity matrix Im as center of projection.

Since our matrices are computed from biological recordings of different individ-
uals, they can encode information specific to their own recording. Therefore, within
the SPD manifold, matrices corresponding to a given class and originating from a
given recording can be geometrically separated from matrices corresponding to the
same class but a different recording. By choosing the proper whitening matrix G for
each recording, we can realign the corresponding recording matrices within a unified
geometric neighborhood.

3.3 Bijective Tokenization

Let {M} be a set of matrices within SPD(m). Let M∗
i = logmat(Mi) (Equation 1)

be a bijective mapping of Mi ∈ {M} onto Sym(m), the vector space of symmetric

matrices (Section 2.2) and of dimension d(m) = m(m+1)
2 . Finally, let VMi

be the vector

representation of M∗
i within the vector space Rd(m), obtained by describing M∗

i in the
canonical basis of Sym(m).

It follows that any weighted sum or linear combination between vectors in {VM} ⊂
Rd(m) is equivalent to the same operation between the corresponding symmetric matri-
ces in {M∗}, itself equivalent to a LogEuclidean (and therefore Riemannian) operation
between the corresponding SPD matrices within {M} (Equation 4), parametered by
P equal to the identity matrix Im.

Therefore, by bijectively mapping matrices in SPD(m) onto Rd(m), we can apply
some Riemannian operations between our matrices through Euclidean operations in
Rd(m). Equivalently, given any triangular number k (so that k = j(j+1)

2 ), any Euclidean
weighted sum between elements of Rk is equivalent to a Riemannian operation within
SPD(j).

We refer to this mapping between SPD(m) and Rd(m) as the “tokenization”
operation2, and to Rd(m) as a “triangular vector space”.

3.4 Triangular Maps

Let Lm,p(·) be a linear map between Rd(m) and Rd(p). As stated above, it can also
be understood as a linear map between Sym(m) and Sym(p), with the sets’ vector
representations as intermediaries.

In [10], we used Lm,p(·) to define a mapping between SPD(m) and SPD(p):

LR
m,p(M) = expmat ◦ Lm,p ◦ logmat(M) ∈ SPD(p) (8)

with M ∈ SPD(m), logmat(·) the matrix logarithm and expmat(·) the matrix
exponential (Section 2.2)3.

2Following the common convention of referring to the vector inputs of Transformer-based architectures
as “tokens”.

3Here, the logarithm is defined from SPD(m) to Sym(m), and the exponential from Sym(p) to SPD(p).
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By this definition, applying Lm,p(·) on vectors in Rd(m) is equivalent to applying
LR
m,p(·) on matrices in SPD(m).
Since Lm,p(·) is a continuous linear map, it preserves relations of proximity:

∥Lm,p(VA)− Lm,p(VB)∥2 ≤ ∥W∥• · ∥VA − VB∥2 (9)

with VA, VB ∈ Rd(m), W ∈ Rd(p)×d(m) the transformation matrix of Lm,p(·), ∥·∥2 the
L2 norm for vector representations, and ∥·∥• the matrix norm induced by ∥·∥2.

By the definition of LogEuclidean metrics (Equation 3), and with A,B ∈ SPD(m)
the matrices that tokenize into VA and VB , we can rewrite Equation 9 thusly:

δ
Ip

LE(L
R
m,p(A),L

R
m,p(B)) ≤ ∥W∥• · δ

Im
LE(A,B) (10)

Hence, the SPD-to-SPD mapping LR
m,p(·) preserves proximity between elements of the

source manifold - and by extension, the underlying SPD structure of the input data.
Note that unlike the BiMap SPD-to-SPD linear mapping (Section 2.3), our LR

m,p(·)
mapping does not require restrictions to be imposed on the weights matrix W .

4 The SPDTransNet Model

The SPDTransNet model, first introduced in [10], can be seen Figure 3. As stated in
Section 1, it expends upon an earlier iteration of our approach [9], itself based on the
SleepTransformer architecture of Phan et al. [16], and follows a Transformer-based [29]
architecture, as those are particularly well suited to the analysis of vector sequences.

To better account for contextual information, as with much of the SOA approaches
(Section 2.1), our model takes a sequence of epochs as input, and follows a two-
step architecture: an intra-epoch step to extract epoch-wise features, followed by an
inter-epoch (or sequence-wise) step to compare them before the final classification.
In particular, SPDTransNet takes a sequence of length L = 2 · ℓ + 1, composed of a
central epoch flanked by its ℓ preceding and following epochs (Figure 3).

4.1 Data Preparation

30 seconds

...

...

...

...

...

...

...

...

...

...

...

δ

θ

γ

...

Covariance

...

...

...

...

...

...

...

...

...

...

...

SC

Handcrafted or CNN

Augmentation + Whitening

...
...

...
...

...

Matrices in
SPD(n)

S×C matrices
in SPD(n+k) = SPD(m)

d(m)

S×C

Tokenization

S

C channels of n EEG signals

...... ...... ...

Triangular Mapping

d(p)

S×C

Fig. 1: Our data preparation pipeline, with S = 30, C = 7 and n = 8.

Using the concepts developed in Section 3, for each EEG epoch, we process a
collection of signals into a sequence of tokens with an underlying SPD structure, as
seen in Figure 1.
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4.1.1 Building SPD matrices

After selecting n signals to compose our matrices, our first step is to apply a z-
score normalization on each signal, to ensure comparability between all signals, both
between recordings and within each recording. Additionally, for each of the six fre-
quency bands defined in Table 1, we apply a fourth order Butterworth bandpass filter,
to isolate different frequential components of the signal. This results in a total of C =
7 input channels, six derived from filtered signals and one from the unfiltered signal,
corresponding to the input in Figure 1.

For each channel, the signals are subdivided into fixed-length segments, without
overlap between segments. We chose to fix the segments’ length to one second, as this
roughly corresponds to the duration of events indicative of a given sleep stage within
the signal [11]. We then compute an n×n covariance matrix for each segment of each
channel, netting us a grid of 30× 7 such matrices per epoch.

4.1.2 Enriching our Matrices

Once computed, the matrices are then enriched through augmentation and whitening
(Sections 3.1 and 3.2), with distinct whitening matrices computed for each channel
(Figure 1).

4.1.2.1 Augmentation Strategies

Let {X} ⊂ SPD(n) be the set of all covariance matrices for a given channel of a
given recording. As stated in Section 3.1, the goal of the augmentation operation is
to add signal-specific information to each covariance matrix Xi ∈ {X}, through the
augmentation matrix Ai ∈ Rn×k weighted by α ∈ R. With Xi a constant, and for a
given value of α, the output of the augmentation operation is entirely determined by
the matrix Ai. To compute it, we have developed two strategies.

Firstly, we can compute Ai through signal-wise handcrafted features. That is to
say, for each of the n signal segments used to construct Xi, we compute k segment-
wise statistics. In this paper, we utilize the average power spectral density (PSD) as
the relevant statistic, as we have found it to be the best performing amongst a number
of tested statistics in our previous work [9]. Having tested the use of a combination of
statistics to construct Ai (i.e. k > 1), we have found no improvement in performance,
and have therefore elected to only use the average PSD of each signal as handcrafted
features (keeping k = 1).

Our second strategy is to learn the augmentation matrix Ai using a dedicated pre-
trained submodel, integrating said submodel within our architecture and finetuning it
during training. As a first iteration, we have chosen to utilize the epoch-wise feature
extraction CNN developed by Seo et al. for IITNet [13], as it is designed to analyze
subwindows of each input epoch, delivering a local feature vector for each subwindow.
We have modified it to take our n signals over C channels per input (Section 4.1.1).
The CNN’s weights are shared between the n signals in a given channel, but not
between channels, since our channel-wise filtering necessarily changes the signals’ spec-
tral configuration between channels - and therefore the required CNN embedding.
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More details about the learned augmentation submodel can be found in Section 2 of
the Supplementary Material.

When utilizing this strategy, in order to not drown the covariance information
within the augmented matrix, we impose k = 3.

4.1.2.2 Composition with Whitening

As stated in Section 3.2, the whitening operation can be used to transport matri-
ces computed from different recordings onto the same neighborhood within the SPD
manifold. As such, we have elected to operate the whitening operation after the
augmentation, regardless of whichever augmentation strategy is chosen.

Let I denote the set of epochs for a given recording and channel, and let {Xi}i∈I

and {Ai}i∈I be the computed covariance matrices and their augmentation matrices,
respectively. A first definition of their whitening matrix is as follows:

G = AvgAI ({augα(Xi, Ai)}i∈I) (11)

where AvgAI(·, ·) denotes the standard affine-invariant average4 (Section 2.2), and
augα(·, ·) is the augmentation operator (Equation 6). We refer to this composition
strategy as “direct average whitening” (DAW).

Whitening operations performed through Equations 7 and 11 shift all the relevant
augmented matrices around the identity matrix Im. In other words, the affine-invariant
average of all matrices enriched through DAW is Im. While this shift has been shown
to improve performance in some contexts [43], the introduction of augmentation raises
some issues. Namely, that Equation 11 computes in a single step an average value
derived from both matrices in {Xi}i∈I and in {Ai}i∈I . While {Xi}i∈I is composed of
SPD matrices, and is therefore nicely resumed by an affine-invariant average, {Ai}i∈I

is composed of matrices of attributes, and would be better represented by an Euclidean
mean.

Based on this, we have proposed two different alternative scheme to compute
each whitening matrix, starting with our “mirrored augmentation whitening” (MAW)
composition strategy, which defines G thusly:

G′ = AvgAI({Xi}i∈I) ; A
′
G = AvgE({Ai}i∈I)

G = augα(G
′, A′

G)
(12)

with AvgE(·) the standard Euclidean average.
Both DAW and MAW configurations augment their matrices prior to whitening.

For the sake of comparison, we elected to test the reverse configuration. We define the
resulting “whitening prior to augmentation” (WPA) thusly:

G′ = AvgAI({Xi}i∈I) ; {X
∗
i }i∈I = whit({Xi}i∈I , G

′)

{Mi}i∈I = augα({X
∗
i }i∈I , {Ai}i∈I)

(13)

4As implemented in [59].

11



Shown in Figure 2 are subject-wise average matrices resulting from all three
enrichment strategies, as obtained for each strategy’s highest performing configuration
(entries 1, 2 and 4 in Table 3). As such, the displayed WPA-enriched average matrix
utilizes learned augmentation features, while the other two utilize handcrafted ones.

As we can see in the figure, although the DAW strategy leads to the closest aug-
mented matrix to the identity, with no non-diagonal element greater than 10−6 in
absolute value, the MAW and WPA strategy still leads to matrices relatively close to
said identity.

As this closeness to the identity remains true for other recordings and channels5, we
may empirically conclude that all three composition strategies transport our matrices
upon the same neighborhood within the SPD manifold.

Fig. 2: Estimation of the affine-invariant average of recording-wise enriched matrices
in heatmap form, computed from unfiltered signals on the MASS-SS3 recording of
index 42. From left to right, these correspond to DAW, MAW and WPA enrichment,
respectively.

4.1.3 Final Input Processing

Following the matrix enrichment operations, from the original covariance matrices
in SPD(n), we obtain matrices in SPD(m) (m ≥ n). These are then tokenized
(Section 3.3), yielding a total of 30×7 tokens of Rd(m) per epoch. In order to combine
all channels into a single dimension, as seen in Figure 1, the tokens are rearranged into
a single sequence of length 210, with the thirty tokens of channel 0 being followed by
the thirty tokens of channel 1, etc.

As we have found that relatively small token sizes lead to worse performance6, we
linearly map our tokens (Section 3.4) onto a larger dimension Rd(p) (p > m) before
going forward to the intra-epoch component.

5As can be seen in the equivalent matrices computed for each recording and channel, available in our
GitHub repository.

6Given a token size d and a number of attention heads h for a Transformer encoder, we found that
imposing d

h
≥ 32 yielded better results.
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Note that the most time-consuming operation in our training pipeline is the
eigenvalue decomposition necessary to compute the matrix logarithm, itself a com-
ponent of our bijective tokenization (Section 3.3). We implement this operation
through a singular value decomposition (SVD) algorithm. More precisely, for the pur-
poses of backpropagation, we approximate the SVD operator’s gradient using Taylor
polynomials, as this computation tends to be numerically unstable otherwise [60].

In order to speed up model training, whenever the enrichment process is invariant
( i.e. the augmentation factor α is non-trainable and handcrafted features are utilized,
cf. Section 4.1.2.1), we tokenize our matrices prior to the start of the learning process,
rather than at each training step, which results in a significant speed-up.

4.2 Model Architecture

t

Epoch
feature vectors

...
...

δ

θ

γ

...

EL

×Nintra

δ

θ

γ

...

×Nintra

E1

Positional
Encoding

δ

θ

γ
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Positional
Encoding

×Nintra

El+1

Fig. 3: Architecture of SPDTransNet, with t = 3 feature tokens per epoch, L = 2·ℓ+1
the length of the input epoch sequence, and ℓ+1 the index of the central epoch. The
“Matrix Computation & Tokenization” component is further developed in Figure 1.

As presented in Figure 3, after a learnable positional encoding [61], our tokens pass
trough an intra-epoch Transformer encoder, whose output sequence is then averaged
into t epoch feature tokens. While only t = 1 (single feature token) and t = 7 (one
feature token per input channel) have interpretations connecting the output of the
average pooling layer and the input of the encoder, we tested other values of t for the
sake of completeness.

The epoch-wise features are then combined into a L × t sequence, and compared
through the inter-epoch Transformer encoder, after which the t tokens corresponding
to the central epoch pass through two linear (i.e. fully connected) layers with dropout
and ReLU activation (labeled “Linear+” in Figure 3), followed by a third and final
linear layer outputting the classification vector. Finally, the training performance is
ascertained through a cross-entropy loss function (with label smoothing [62] for addi-
tional regularization), complete with application of a logarithmic softmax function to
the classification vector.

As such, our model follows a sequence-to-element classification scheme (for reasons
explained in Section 5), but can easily be adapted to follow a sequence-to-sequence
scheme instead (Section 2.1).
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4.3 Model Structural Preservation

As seen in Section 3.4, weighted sums and triangular linear maps involving tokenized
matrices don’t cause issue when it comes to SPD structural preservation. Hence, stan-
dard fully connected / linear neural network layers are permissible, as long as the
output length is triangular. Furthermore, the addition of a bias term doesn’t cause any
additional issue, as it boils down to a weighted sum between vector representations.

This said, our SPDTransNet model contains a number of other operations, whose
structure preservation properties need to be further justified.

4.3.1 Structure-Preserving Multihead Attention (SP-MHA)

(N × L × )

K
h

Q
(N × L × )

V

(N × L × L)

([N×h] × L × L)

([N×h] × L
× [d/h])

(N × L × d)

Fig. 4: Our SP-MHA component. The computation of attention maps (small-dashed
black rectangles) is identical to the original MHA, whereas the application of said
attention maps to the tokens within the Value tensor (large-dashed red rectangle) has
been modified to avoid any projection and subsequent concatenation.

Classically, Transformers utilize a component called Linear Multihead Attention
(L-MHA), first introduced by Vaswani et al. [29] Unfortunately, this component calls
for the concatenation of output tokens for each attention head, an operation that is
not interpretable using our framework of tokenized SPD matrices.

To counteract this, in our previous work [10], we defined a structure-preserving
alternative to L-MHA, called SP-MHA (as seen in Figure 4). We proved that not only
did our SP-MHA preserve the structure of our input tokens, but it did so without
requiring linear maps, aside for the attention map computation (the small-dashed
black rectangle in the figure) - which remains identical to L-MHA.
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4.3.2 Additional Guarantees

Aside from the final classification layer and the computation of attention maps
(Section 4.3.1), all linear mappings of our tokens are triangular (Section 3.4). Notably,
this includes the two mappings contained in the Feed-Forward (FF) component of
Transformer encoders [29].

As sums and linear combinations of tokens are permissible, most other model
components - i.e. positional encodings, average poolings and in-encoder layer normal-
izations - do not cause a loss of structure. Same for the ReLU and dropout layers in the
Transformer encoders’ FF components, as setting values within a token to zero won’t
remove the corresponding matrix from Sym(m). The only issue remaining is the first
Linear+ layer, which combines the t feature tokens output by the inter-epoch encoder
by flattening them - hence losing the interpretability of its output as SPD matrices.
However, as these layers are intended to translate the embedding within the Trans-
former encoders into the final classification, rather than being part of said embedding
themselves, this doesn’t cause issue.

Therefore, we claim structure preservation for the data going through the
SPDTransNet model up to the final classification layer for t = 1, and up to the first
Linear+ layer for t > 1.

5 Experimental Methodology

Due to the high degree of imbalance within sleep stage scoring datasets, along with
low performance of SOA methods for some sleep stages (Section 7), we have elected
to orient our methodology towards maximizing per-stage performance. As such, we
use the macro-averaged (i.e. unweighted average of a binary statistic computed for
each class) F1 score, or MF1, as main performance metric, as it is insensitive to class
imbalance and is often used in the literature in this context.

In addition, to ensure that the influence of the least represented classes isn’t
eclipsed during the learning process, we rebalance our training sets through oversam-
pling - resulting in the same number of examples for each class. This requires the
assignment of a unique label to each input; as such, we cannot use a (multi-label)
sequence-to-sequence classification scheme (Section 2.1). For each configuration tested,
we evaluate our model on a given dataset through cross-validation, preceded by a
hyperparameter research on a single fold.

In Section 7, we compare our model to a number of sequence-based State-of-the-
Art approaches. However, the corresponding models do not share our input sequence
definition. In order to counteract border effects and ensure that the same epochs are
classified in all models within the reported results, we ignore some epochs at the
beginning and end of each test set recording, as done in our previous work [9, 10]. More
precisely, we ensure that the first and last 24 epochs are ignored7. For SPDTransNet,
it means that the first and last 24 - ℓ epochs (Section 4) in each test set recording
will not ever be used, even as context epochs. We refer to this as “test set clipping”
in subsequent sections.

7The largest possible number of epochs ignored by DeepSleepNet [14] at the end of a test set recording.
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Table 2: Overview of the tested datasets. Subject average age shown with standard
deviation.

Dataset Avg. age (yrs) # epochs % N3 % N2 % N1 % REM % Awake
MASS-SS1 63.6 ± 5.3 51292 6.64 43.22 13.87 12.41 23.87
MASS-SS3 42.5 ± 18.9 59317 12.90 50.24 8.16 17.84 10.86

Dreem DOD-H 35.32 ± 7.51 24662 14.25 48.17 6.10 19.17 12.31

5.1 SPDTransNet Configuration

As with SleepTransformer [16], we have chosen a default input sequence length of L =
21 for SPDTransNet, corresponding to a context size of ℓ = 10 (Section 4). To avoid
cluttering the hyperparameter research process, we chose constant values for some low-
impact hyperparameters, for instance setting all dropout rates to 0.1, and the hidden
dimension of our Transformer encoders’ feedforward components [29] to d(x) = 903
(i.e. x = 42, cf. Section 3.3).

For the hyperparameter research (Section 5), we utilize the Optuna tool [63], with
five simultaneous runs and 50 total runs per configuration (or eight simultaneous runs
if the augmentation features are learned, as this significantly lengthens the learning
process - see thereafter). Through it, the token size d(p) following the first triangular
map (Section 4.1.3) is chosen in {351, 378} (i.e. p ∈ {26, 27}), and the h parameter

of each Transformer encoder (Section 4.3.1) in {3, 9} - a restricted choice, since d(p)
h

must remain an integer whatever the chosen combination. In turn, the number of
epoch feature tokens t (Section 4.2) among {1, 3, 5, 7, 10}. Other parameters, like the
learning rate and augmentation factor α (Sections 3.1 and 4.1.2), are chosen from a
range using log-uniform sampling.

In our testing, we have found that moderate variations in the factor α have a small
impact on classification when the network is configured for augmentation through
handcrafted features (Section 4.1.2.1). As such, when allowed to be learned, α remains
quasi-constant. To avoid unnecessary computations at each step, in this configura-
tion, we set α as constant, enabling us to speed up training times by pre-tokenizing
our matrices (Section 4.1.3). This is not the case when utilizing learned features for
augmentation, and α is kept learnable in this context.

More details can be found in our GitHub repository.

5.2 Datasets used

To best compare ourselves to the literature, we selected publicly available sleep stage
scoring datasets that had a relatively large and varied number of EEG signals to
choose from, since our model is based on comparison of brain activity between different
regions.

The Montreal Archive of Sleep Studies (MASS) [64] is a dataset composed of five
subsets (SS1 to SS5), containing a large number of common EEG signals (16 common
signals in all but MASS-SS4) acquired with a common reference electrode8. Of these,
we selected eight signals corresponding to electrodes F3, F4, C3, C4, T3, T4, O1 and

8All MASS-SS3 subjects use a linked-ear reference (LER), as do some MASS-SS1 subjects, the others
using a computed linked-ear (CLE) reference.
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O2 - i.e. frontal, central, temporal and occipital locations on both hemispheres, giving
us a reasonably wide range of sampled localized cerebral activity. We selected for
analysis only the subsets scored with the AASM ruleset:

MASS-SS3 is the largest and most widely used of the tested datasets, with 62
healthy subjects. With it, we use the seemingly random 31 folds generated by Seo et
al. [13], with each fold having a 50/10/2 division of subjects dedicated to the train-
ing, validation and test sets respectively. This follows a leave-two-out cross-validation
scheme, with the union of all test sets corresponding to the dataset in its entirety.

MASS-SS1 is made of 53 older subjects (Table 2), including 15 that had been
diagnosed with mild cognitive impairment (MCI), making it harder to classify. We
randomly generated 26 cross-validation folds, with a 42/9/2 split for all but one fold,
said fold having a 42/8/3 split instead. As with MASS-SS3, we ensure that the union
of test sets corresponds to the entire dataset.

Finally, we also tested our approach on the Dreem dataset [27], an openly avail-
able dataset composed of subjects both healthy and suffering from sleep apnea. The
recordings in its Dreem DOD-H subset, corresponding to all healthy subjects, con-
tain 12 EEG-derived signals, including five obtained from an EEG electrode and a
reference9: F3, F4, C3, Fp1 and Fp2 - the latter two being pre-frontal. The remain-
ing derivations are acquired between pairs of EEG electrodes, but we can recover the
signals corresponding to O1 and O2 from them. We have elected to only utilize these
seven EEG signals in this paper, as we wish to compute our matrices (and estimate
functional connectivity) between signals corresponding only to localized brain activ-
ity. As with MASS-SS1, we have randomly generated our folds, this time 25 folds
following a leave-one-out scheme and a 20/4/1 split.

As shown in Table 2, our training sets contain at most 59k epochs, without account-
ing for border effects or test set clipping (Section 5). This is a relatively small dataset
for training a Transformer-based model of this size, a limitation due to the relative
scarcity of publicly available sleep stage scoring datasets having a sufficient amount of
EEG electrodes included. As a consequence, the cross-validation folds of each dataset
are relatively small (see thereafter). Combined with a high level of inter-subject (and
thus inter-recording) variability due to the biological nature of our data, fold-wise
results tend to differ significantly, resulting in inflated values of standard deviation.

For the purposes of hyperparameter researches (Section 5.1), when training on
MASS-SS3, we use the same randomly selected fold as our previous work [9, 10]. For
each of the other two datasets, a new fold was randomly selected for this purpose.

6 Ablation Study

In order to better understand the impact of SPDTransNet’s components and config-
urations the model’s performance, we evaluated and compared a number of model
variations. These experiments utilize exclusively the MASS-SS3 dataset (Section 5.2),
due to its size and widespread use.

For all tables introduced in this section and Section 7, the term after the ± symbol
corresponds to the standard deviation between the results obtained from each relevant

9Located behind the ear in the opposite hemisphere.
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Table 3: Comparison of enrichment configurations for SPDTransNet, using MASS-
SS3
Augmentation Whitening MF1 N3 F1 N2 F1 N1 F1
Handcrafted DAW 79.66 ± 3.68 78.44 ± 10.93 87.77 ± 2.42 56.47 ± 8.74
Handcrafted MAW 81.24 ± 3.29 78.81 ± 11.17 89.36 ± 2.36 60.50 ± 6.18
Handcrafted WPA 80.97 ± 3.06 79.79 ± 10.27 89.73 ± 2.04 59.21 ± 7.06
Learned WPA 81.64 ± 2.88 80.15 ± 10.46 89.54 ± 2.46 60.29 ± 5.52

cross-validation fold. As stated in Section 5.2, this value is somewhat inflated, and
doesn’t exactly correspond to an uncertainty value. In addition, only the class-wise
F1 scores for sleep stages N1 to N3 are displayed, as those are particularly relevant
- with N2 being the easiest to classify, showcasing peak class-wise performance, and
N1 and/or N3 being the worst performing. Full results are available on our GitHub
repository.

6.1 Enrichment configurations

As presented in Section 4.1.2, prior to tokenization, our SPD matrices are enriched
through a combination of augmentation and whitening, adding additional information
to said matrices while ensuring their comparability by transporting matrices from
different recordings and channels onto the same neighborhood.

As we can see in Table 3, when using handcrafted augmentation features, the
MAW strategy is the best performing, though WPA isn’t significantly behind. By
contrast, the DAW strategy performed poorly, particularly in the N1 sleep stage. This
confirms that the single-step averaging of combined SPD covariance matrices and
Euclidean augmentation matrices would lead to data degradation, hurting the model’s
performance.

Due to the learning process shifting the weights used to compute learned aug-
mentation features at every learning step, utilizing the DAW strategy in a learned
augmentation configuration would add a layer of complexity to the already inflated
cost of this approach (Section 5.1). Given this fact, compounded with the low perfor-
mance differential between MAW and WPA, we have elected to only test the learned
augmentation configuration with the WPA strategy.

As seen in the table, this results in a performance improvement of .4 points -
relatively minimal when compared to the standard deviation of both variants. Since
the above experiments do not alter the main, post-tokenization structure-preserving
model, we have elected to utilize the handcrafted augmentation and MAW strategy
as our baseline enrichment configuration in Section 6.2.

6.2 Further Ablation Experiments

Starting with the baseline configuration of SPDTransNet (Section 6.1), we further
analyze our model through punctual, non-cumulative modifications to its structure
and to our methodology, with results presented in Table 4.

Though the different composition strategies for augmentation and whitening were
investigated in Section 6.1, their individual contribution to classification was not. In
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Table 4: Analysis of various modifications to the SPDTransNet baseline, using MASS-
SS3

Configuration MF1 N3 F1 N2 F1 N1 F1
Baseline 81.24 ± 3.29 78.81 ± 11.17 89.36 ± 2.36 60.50 ± 6.18

Zero-valued augmentation 80.58 ± 3.86 78.45 ± 11.52 89.03 ± 2.38 59.09 ± 7.28
Global covariance whitening 79.46 ± 3.06 77.35 ± 11.59 88.56 ± 2.70 57.40 ± 5.78

Classic MHA 80.82 ± 3.40 76.96 ± 12.79 88.92 ± 2.09 60.16 ± 7.20
Input length L = 13 81.06 ± 3.49 78.79 ± 11.13 88.71 ± 2.31 60.39 ± 6.77
Input length L = 29 80.45 ± 3.87 77.70 ± 11.83 89.26 ± 2.36 59.57 ± 5.86

the case of handcrafted augmentation features, we know that variations in the factor
α have a negligible effect on said performance (Section 5.1), putting into question
the augmentation’s influence on our classification’s performance. To learn more, we
modified the baseline configuration to augment our matrices with vectors of zeros. As
seen in the table, this zero-valued augmentation leads to a moderate performance
drop, though one slightly larger than when using the WPA strategy (Table 3). Hence,
the addition of handcrafted features through augmentation does result in an increase
in performance.

In an earlier publication [9], we computed the MAW whitening matrices G′

(Equation 12) by taking the global covariance matrix of each recording and chan-
nel. This is equivalent to the Euclidean average of said recording’s one-second matrices,
and therefore ill-suited to an analysis based on Riemannian structural preservation,
as evidenced by the performance drop seen in Table 4 - hence our decision to utilize
the affine-invariant average instead.

A major component of SPDTransNet is the replacement of our Transformer
encoders’ standard L-MHA component with our own SP-MHA (Section 4.3.1). To bet-
ter understand its contribution to our classification accuracy, we tested our model’s
performance when equipped with the more classic MHA. As seen in Table 4, this
change leads to a slight drop in performance. Hence, though our lead when using
SP-MHA is not significant, it does mean that this component does not underperform
when compared to L-MHA. As such, the added interpretability afforded by our model’s
structure-preserving operations throughout the analysis (Section 4.3.2) comes at no
additional performance cost.

Finally, we have elected to study the input sequence length L (Section 4) on
SPDTransNet. As stated in Section 5.1, our initial choice of context size (i.e. ℓ = 10)
is semi-arbitrary. Hence, we implement a change in input length, testing both L =
13 (i.e. ℓ = 6) and L = 29 (i.e. ℓ = 14). However, as seen in the table, both alterations
yield a reduction in performance, though the negative impact of increasing contex-
tual information seems to outweigh that of reducing it. The baseline value of ℓ = 10
therefore seems to be a good compromise.

7 Comparison to the State-of-the-Art

To better contextualize our approach’s capabilities, we test a number of previously
published approaches (Section 2.1) - more specifically, DeepSleepNet by Supratak
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et al. [14], IITNet by Seo et al. [13], and the approach taken by Dequidt et al. [26],
labeled SleepVGG16 in this paper.

We compare them to the SPDTransNet baseline, as defined in Section 6.2,
as well as the variant of our model trained using learned augmentation features
(Section 6.1), labeled SPDTransNet+ in this section.

To ensure a fair comparison, we re-trained these models with our own method-
ology whenever possible, while keeping as much of the original authors’ published
implementation as possible. Due to the absence of published hyperparameter research
guidelines, we only use their published hyperparameters (or, if absent, those present
in their published code) in our experiments.

Furthermore, DeepSleepNet already implements a rebalancing through oversam-
pling in their pretrained epoch-wise component, before including it to an end-to-end
sequence-to-sequence model. We have not modified this classification scheme.

Note that since we are optimizing for class-wise performance through the MF1 score
when these approaches for the most part optimized the global (unweighted) accuracy
score, our obtained results tend to be lower than those the original authors published.
This is true even for SleepVGG16, as even though the original approach also optimized
through the MF1 score, it didn’t include our test set clipping (Section 5). We have
found that this clipping tended to reduce the test set performance measures, presum-
ably because epochs in the beginning and end of recordings (i.e. mostly corresponding
to the Awake stage) are less ambiguous than other instances of the same stage.

7.1 Learning From Scratch (LFS)

For each dataset presented in Section 5.2, we trained every considered model - i.e. both
the baseline SPDTransNet model and the models presented in Section 7. This allows us
to directly compare our model’s performance with State-of-the-Art approaches when
using our class-wise performance optimization methodology. The obtained results are
displayed in Table 5.

As seen in the table, the size and relative homogeneity of MASS-SS3 (Section 5.2)
translated into the best performance overall for each considered model. Interestingly,
the higher degree of inter-subject variability in MASS-SS1 meant that even though
this set has more than double the epoch count of Dreem DOD-H, the latter yielded
better overall results than MASS-SS1, though the single-recording test sets led to a
greater standard deviation in the aggregated results.

Model-wise, the baseline SPDTransNet performs similarly to or slightly better than
SleepVGG16, with the learned augmentation variant outperforming both on SS3. Both
SPDTransNet and SleepVGG16 outperform DeepSleepNet and IITNet, though with
a lead of around 3 points for SS3, 4 points for Dreem DOD-H and 6+ points for SS1.

This resiliency to increased inter-subject variability that both top models exhibit
is most likely due to their common multi-signal approach, rather than the reliance on
single-channel EEG analysis favored by DeepSleepNet and IITNet.
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Table 5: Learning from scratch on considered datasets
Dataset Model MF1 N3 F1 N2 F1 N1 F1

SS3

DeepSleepNet 78.14 ± 4.12 80.38 ± 9.35 89.25 ± 3.12 53.52 ± 8.24
IITNet 78.48 ± 3.15 81.97 ± 8.91 88.15 ± 2.84 56.02 ± 6.54

SleepVGG16 81.23 ± 2.56 82.02 ± 8.76 90.57 ± 2.65 58.29 ± 5.01
SPDTransNet 81.24 ± 3.29 78.81 ± 11.17 89.36 ± 2.36 60.50 ± 6.18
SPDTransNet+ 81.64 ± 2.88 80.15 ± 10.46 89.54 ± 2.46 60.29 ± 5.52

SS1

DeepSleepNet 68.49 ± 6.12 53.47 ± 21.59 83.74 ± 4.30 50.81 ± 8.19
IITNet 70.82 ± 6.09 56.40 ± 21.76 78.79 ± 6.20 52.29 ± 6.47

SleepVGG16 77.31 ± 5.46 66.75 ± 20.76 86.51 ± 3.82 62.59 ± 5.34
SPDTransNet 77.75 ± 5.41 63.08 ± 20.96 85.28 ± 4.55 63.29 ± 6.02

DOD-H

DeepSleepNet 73.07 ± 13.66 75.98 ± 23.58 84.50 ± 15.20 48.40 ± 16.86
IITNet 73.55 ± 9.36 76.67 ± 24.21 86.32 ± 6.27 49.68 ± 12.53

SleepVGG16 75.80 ± 10.60 76.87 ± 24.15 85.99 ± 11.72 51.30 ± 12.00
SPDTransNet 77.48 ± 8.74 77.75 ± 24.04 87.40 ± 5.42 56.99 ± 11.93

7.2 Direct Transfer (DT)

To be used in a clinical setting, a sleep stage scoring model would need to retain a
good level of performance when utilized with newly acquired data. As such, we have
elected to compare the ability of all considered models to adapt to other datasets.
These experiments are not undertaken using the Dreem DOD-H dataset, as it differs
from both SS1 and SS3 in the number and nature of the considered electrodes.

For each model, we utilize the LFS weights obtained on each fold of MASS-SS3
(Section 5), and test on all recordings of the MASS-SS1 dataset. The results are
displayed in Table 6.

One first observation is that for each model, the standard deviations tend to be
lower than their LFS equivalent, both on SS1 and SS3, particularly for our model and
SleepVGG16. As stated in Section 6, the high standard deviations in Table 5 are a
consequence of our cross-validation strategy. Since test sets between folds are relatively
small and non-overlapping, inter-test-set variability tends to be high, inflating the
resulting standard deviation when aggregating results. By using a unified test set for
each fold, we remove this factor entirely, yielding lower standard deviations than for
the LFS experiments, and increasing our confidence in the significance of the obtained
results.

The most striking result, however, is the dramatic reduction in performance
between LFS and DT results for both single-channel models, with a loss of 15+ points
on DeepSleepNet and IITNet compared to their LFS performance on MASS-SS1 - not
to mention their relatively high standard deviations, indicative of inter-fold instability.

By contrast, SleepVGG16 lost slightly less than 3 points, and the baseline
SPDTransNet, less than one point. Hence, it would seem that our approach through
functional connectivity does outperform SleepVGG16 in resiliency when in a multi-
dataset context.

Interestingly, the SPDTransNet+ configuration outperforms even our baseline LFS
results on SS1. This would indicate that the feature extraction through 1D CNN
strategy utilized by DeepSleepNet and IITNet isn’t the main source of their lack of
flexibility, as SPDTransNet+ was able to utilize the epoch-wise feature extraction
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Table 6: Direct transfer, i.e. testing models trained on MASS-SS3 with
recordings from another dataset

Model MF1 N3 F1 N2 F1 N1 F1
DeepSleepNet 52.41 ± 3.15 55.43 ± 5.95 61.17 ± 6.44 32.11 ± 3.75

IITNet 55.27 ± 4.08 61.05 ± 4.39 69.82 ± 6.71 36.54 ± 4.42
SleepVGG16 74.68 ± 1.82 70.82 ± 3.80 86.72 ± 0.62 55.79 ± 2.36

SPDTransNet 76.99 ± 0.94 67.59 ± 2.08 86.52 ± 0.54 57.92 ± 1.85
SPDTransNet+ 78.23 ± 0.62 68.71 ± 2.19 86.43 ± 0.91 59.68 ± 1.72

Table 7: Finetuning weights trained on MASS-SS3 using another dataset
Model MF1 N3 F1 N2 F1 N1 F1

DeepSleepNet 67.65 ± 7.47 55.15 ± 22.58 81.03 ± 5.42 47.48 ± 7.03
IITNet 70.95 ± 5.85 56.51 ± 21.63 80.46 ± 6.46 53.85 ± 5.90

SleepVGG16 78.90 ± 4.61 68.88 ± 18.53 86.41 ± 3.91 64.15 ± 6.19
SPDTransNet 78.99 ± 4.45 64.65 ± 18.69 86.19 ± 5.09 64.60 ± 5.46
SPDTransNet+ 79.41 ± 4.40 65.90 ± 18.21 85.90 ± 5.02 65.16 ± 6.24

submodel of IITNet (Section 4.1.2.1) to great extent. Rather, it would seem that said
inflexibility is once again due to their monosignal nature.

7.3 Finetuning (FT)

In addition to DT (Section 7.2), and for the same reasons, we tested the considered
models’ ability to improve classification through transfer learning, loading weights
trained on MASS-SS3 (Section 7.1) and finetuning them by re-training on each fold of
the other considered datasets. For the MASS-SS3 weights, we selected those trained
using the fold used in hyperparameter researches (Section 5.2).

As seen in Table 7, in this configuration, SPDTransNet is able to improve its clas-
sification performance when compared to learning from scratch on MASS-SS1, with
SleepVGG16 not far behind, and the SPDTransNet+ variant once again outperform-
ing both. However, the same cannot be said for DeepSleepNet and IITNet, whose
performance was comparable to the one obtained in the LFS configuration - meaning
that prior learning on SS3 had the same impact as random weight initialization when
it comes to learn on SS1.

Combined with the results from Section 7.2, this tells us that differences between
EEG sleep staging datasets can be large enough to make non-LFS learning strategies
irrelevant, particularly for models trained on few EEG signals. However, multi-signal
models, such as our SPDTransNet network and SleepVGG16, have proven to be robust
to such changes, allowing it them retain decent performance in DT and even improve
in FT. Additionally, SPDTransNet’s learned augmentation variant has proved partic-
ularly well-performing across the board, with the handcrafted augmentation baseline
performing on par with the SleepVGG16 model, and outperforming it when exposed
to an unknown dataset.
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8 Conclusion

In this paper, we have explored the capabilities of our SPDTransNet model, a
Transformer-based model designed for the structure-preserving analysis of timeseries
of Symmetric Positive Definite covariance matrices, in the classification of sleep stages
from a collection of electroencephalographic signals.

Beyond once again proving the relevance of an analysis through functional con-
nectivity for this task, we have showcased our model’s flexibility in multi-dataset
environment. In particular, we outperformed an otherwise equivalent model when clas-
sifying signals from an unknown dataset, with minimal loss of performance compared
to training on said dataset.

Furthermore, we have expanded upon our signal processing pipeline, enriching our
covariance matrices through the inclusion of learned signal-specific features, further
improving both our model’s baseline performance and flexibility.

Supplementary Material. Specifics regarding some portions of this paper have
been included as Supplementary Material, and are located at the end of this document.
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Supplementary Material

1 Proof of SPD Preservation through Augmentation

Let X ∈ SPD(n), A ∈ Rn×k and x ∈ Rn+k be arbitrary elements of their respective
set. In addition, let x1 ∈ Rn and x2 ∈ Rk be defined so that:

xT = (xT
1 , xT

2 )

In other words, x is the concatenation of x1 and x2.
Let X ′ = augα(X,A) ∈ Rm×m, with m = n+k, be the result of the augmentation

of X by A (Section 3.1 of the paper). Since we make no assumption on the value
taken by A, we set α = 1, without loss of generality10.

By definition,

X ′ ∈ SPD(m) ⇔ ∀x ̸= 0m, xT ·X ′ · x > 0

with 0m ∈ Rm a vector of zeros.

xT ·X ′ · x = (xT
1 , xT

2 ) ·

⎛

⎜

⎜

⎝

X +A · AT A

AT Ik

⎞

⎟

⎟

⎠

·

(

x1

x2

)

= (xT
1 ·X + xT

1 · A ·AT + xT
2 · AT , xT

1 · A+ xT
2 · Ik) ·

(

x1

x2

)

= xT
1 ·X · x1 + xT

1 · A ·AT · x1 + xT
2 ·AT · x1 + xT

1 · A · x2 + xT
2 · Ik · x2

= xT
1 ·X · x1 + (xT

1 · A) · (xT
1 ·A)T + (xT

1 ·A) · x2 + xT
2 · (xT

1 · A)T + xT
2 · x2

Therefore:

xT ·X ′ · x = xT
1 ·X · x1 + (xT

1 · A+ xT
2 ) · (x

T
1 · A+ xT

2 )
T

with xT
1 · A and xT

2 line vectors of length k.

→ (xT
1 ·A+ xT

2 ) · (x
T
1 · A+ xT

2 )
T ≥ 0

However:

• If x1 ̸= 0n, xT
1 ·X · x1 > 0 (by definition, as X ∈ SPD(n))

• If x1 = 0n but x2 ̸= 0k, (xT
1 ·A+ xT

2 ) · (x
T
1 ·A+ xT

2 )
T = xT

2 · x2 > 0

10If α ̸∈ {0, 1}, replace A with A′ = 1

α
· A. If α = 0, replace it with 0n×k.
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In conclusion, whichever the values of x1 and x2, and therefore for any arbitrary
vector x ∈ Rm, we have:

xT ·X ′ · x = 0 ⇔ x = 0m

Which proves thatX ′ = aug1(X,A) is SPD, and more generally, that the augmentation
operation presented in Equation 6 of the paper preserves the SPD nature of its input
X .

2 The Signal-Wise Feature Extraction Submodel

As stated in Section 4.1.2.1 of the paper, we utilize the epoch-wise feature extraction
CNN utilized by Seo et al. in IITNet[13]. It is derived from the ResNet-50 architecture,
modified to analyze 1D signals, and which outputs N feature vectors of length 128.
Each feature vector is derived from a section of the input signal, with the number of
vectors N and their receptive fields being determined by the length of the input signal.
Since EEG epochs have a fixed duration of 30 seconds (Section 2.1 of the paper), these
will depend on the sampling frequency of the signals.

As seen in Seo et al.’s original publication, an input of length 3000 (corresponding
to an epoch sampled at 100Hz) results in N = 47 feature vectors of R128. With
MASS-SS1 and MASS-SS3, both sampled at 256Hz, this becomes N = 120. Given our
subdivision of each epoch in 30 one-second segments (Section 4.1.1 of the paper), this
equates to 4 vectors of R128 (i.e. 512 features) per segment, channel and signal.

We modify this CNN in two ways. Firstly, we adapt it to handle multi-channel,
multi-signal inputs. As seen in Figure 1, for each epoch, features from each EEG signal
and each channel are computed in parallel, sharing weights between signals in the
same channel, but not between channels. Secondly, we reduce the 512 features per one-
second segment into k features through a fully connected layer, obtaining a timeseries
of 30 vectors of Rk per channel and signal.

Combining the n signals for a given segment and channel, we obtain the n × k
feature matrix that we use to augment our covariance matrices. As seen in Table 1,
the receptive field corresponding to each feature vector of Rk always includes the time
segment on which the corresponding matrix is computed, with additional overlap with
neighboring segments.
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Fig. 1: Epoch-wise feature extraction submodel of IITNet [13], adapted to extract
augmentation features - with n the number of EEG signals, C the number of channels,
and k the size of each signal-wise feature vector.

Table 1: Receptive fields for each of the 30 augmentation feature
vectors extracted, for epochs sampled at 256 Hz.
ID Lower sample Upper sample Starting time (s) Duration (s)
0 0 589 0 2.3
1 0 845 0 3.3
2 131 1101 0.51 3.79
3 387 1357 1.51 3.79
4 643 1613 2.51 3.79
... ... ... ... ...
25 6019 6986 23.51 3.79
26 6275 7245 24.51 3.79
27 6531 7501 25.51 3.79
28 6787 7679 26.51 3.48
29 7043 7679 27.51 2.48
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